Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Structured version   Visualization version   GIF version

Theorem lshpkrlem1 39066
Description: Lemma for lshpkrex 39074. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 21128 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
54lmodfgrp 20889 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
6 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
7 lshpkrlem.o . . . . 5 0 = (0g𝐷)
86, 7grpidcl 19005 . . . 4 (𝐷 ∈ Grp → 0𝐾)
93, 5, 83syl 18 . . 3 (𝜑0𝐾)
10 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
11 lshpkrlem.a . . . 4 + = (+g𝑊)
12 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
13 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
14 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.x . . . 4 (𝜑𝑋𝑉)
18 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
19 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 39065 . . 3 (𝜑 → ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
21 oveq1 7455 . . . . . . 7 (𝑘 = 0 → (𝑘 · 𝑍) = ( 0 · 𝑍))
2221oveq2d 7464 . . . . . 6 (𝑘 = 0 → (𝑏 + (𝑘 · 𝑍)) = (𝑏 + ( 0 · 𝑍)))
2322eqeq2d 2751 . . . . 5 (𝑘 = 0 → (𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + ( 0 · 𝑍))))
2423rexbidv 3185 . . . 4 (𝑘 = 0 → (∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
2524riota2 7430 . . 3 (( 0𝐾 ∧ ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
269, 20, 25syl2anc 583 . 2 (𝜑 → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
27 simpr 484 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋𝑈)
28 eqidd 2741 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋 = 𝑋)
29 eqeq2 2752 . . . . . . 7 (𝑏 = 𝑋 → (𝑋 = 𝑏𝑋 = 𝑋))
3029rspcev 3635 . . . . . 6 ((𝑋𝑈𝑋 = 𝑋) → ∃𝑏𝑈 𝑋 = 𝑏)
3127, 28, 30syl2anc 583 . . . . 5 ((𝜑𝑋𝑈) → ∃𝑏𝑈 𝑋 = 𝑏)
3231ex 412 . . . 4 (𝜑 → (𝑋𝑈 → ∃𝑏𝑈 𝑋 = 𝑏))
33 eleq1a 2839 . . . . . 6 (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈))
3433a1i 11 . . . . 5 (𝜑 → (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈)))
3534rexlimdv 3159 . . . 4 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏𝑋𝑈))
3632, 35impbid 212 . . 3 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = 𝑏))
37 eqid 2740 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
3810, 4, 19, 7, 37lmod0vs 20915 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ( 0 · 𝑍) = (0g𝑊))
393, 16, 38syl2anc 583 . . . . . . . . 9 (𝜑 → ( 0 · 𝑍) = (0g𝑊))
4039adantr 480 . . . . . . . 8 ((𝜑𝑏𝑈) → ( 0 · 𝑍) = (0g𝑊))
4140oveq2d 7464 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = (𝑏 + (0g𝑊)))
421adantr 480 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑊 ∈ LVec)
4342, 2syl 17 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑊 ∈ LMod)
44 eqid 2740 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4544, 14, 3, 15lshplss 38937 . . . . . . . . 9 (𝜑𝑈 ∈ (LSubSp‘𝑊))
4610, 44lssel 20958 . . . . . . . . 9 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑏𝑈) → 𝑏𝑉)
4745, 46sylan 579 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑏𝑉)
4810, 11, 37lmod0vrid 20913 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑏𝑉) → (𝑏 + (0g𝑊)) = 𝑏)
4943, 47, 48syl2anc 583 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + (0g𝑊)) = 𝑏)
5041, 49eqtrd 2780 . . . . . 6 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = 𝑏)
5150eqeq2d 2751 . . . . 5 ((𝜑𝑏𝑈) → (𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ 𝑋 = 𝑏))
5251bicomd 223 . . . 4 ((𝜑𝑏𝑈) → (𝑋 = 𝑏𝑋 = (𝑏 + ( 0 · 𝑍))))
5352rexbidva 3183 . . 3 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
5436, 53bitrd 279 . 2 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
55 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5655rexbidv 3185 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5756riotabidv 7406 . . . . . 6 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
58 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
59 riotaex 7408 . . . . . 6 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
6057, 58, 59fvmpt 7029 . . . . 5 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
61 oveq1 7455 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 + (𝑘 · 𝑍)) = (𝑏 + (𝑘 · 𝑍)))
6261eqeq2d 2751 . . . . . . . 8 (𝑦 = 𝑏 → (𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6362cbvrexvw 3244 . . . . . . 7 (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6463a1i 11 . . . . . 6 (𝑘𝐾 → (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6564riotabiia 7425 . . . . 5 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6660, 65eqtrdi 2796 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6717, 66syl 17 . . 3 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6867eqeq1d 2742 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
6926, 54, 683bitr4d 311 1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  {csn 4648  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973  LSSumclsm 19676  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LVecclvec 21124  LSHypclsh 38931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lshyp 38933
This theorem is referenced by:  lshpkr  39073
  Copyright terms: Public domain W3C validator