Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Structured version   Visualization version   GIF version

Theorem lshpkrlem1 37051
Description: Lemma for lshpkrex 37059. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20283 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
54lmodfgrp 20047 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
6 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
7 lshpkrlem.o . . . . 5 0 = (0g𝐷)
86, 7grpidcl 18522 . . . 4 (𝐷 ∈ Grp → 0𝐾)
93, 5, 83syl 18 . . 3 (𝜑0𝐾)
10 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
11 lshpkrlem.a . . . 4 + = (+g𝑊)
12 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
13 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
14 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.x . . . 4 (𝜑𝑋𝑉)
18 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
19 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 37050 . . 3 (𝜑 → ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
21 oveq1 7262 . . . . . . 7 (𝑘 = 0 → (𝑘 · 𝑍) = ( 0 · 𝑍))
2221oveq2d 7271 . . . . . 6 (𝑘 = 0 → (𝑏 + (𝑘 · 𝑍)) = (𝑏 + ( 0 · 𝑍)))
2322eqeq2d 2749 . . . . 5 (𝑘 = 0 → (𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + ( 0 · 𝑍))))
2423rexbidv 3225 . . . 4 (𝑘 = 0 → (∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
2524riota2 7238 . . 3 (( 0𝐾 ∧ ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
269, 20, 25syl2anc 583 . 2 (𝜑 → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
27 simpr 484 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋𝑈)
28 eqidd 2739 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋 = 𝑋)
29 eqeq2 2750 . . . . . . 7 (𝑏 = 𝑋 → (𝑋 = 𝑏𝑋 = 𝑋))
3029rspcev 3552 . . . . . 6 ((𝑋𝑈𝑋 = 𝑋) → ∃𝑏𝑈 𝑋 = 𝑏)
3127, 28, 30syl2anc 583 . . . . 5 ((𝜑𝑋𝑈) → ∃𝑏𝑈 𝑋 = 𝑏)
3231ex 412 . . . 4 (𝜑 → (𝑋𝑈 → ∃𝑏𝑈 𝑋 = 𝑏))
33 eleq1a 2834 . . . . . 6 (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈))
3433a1i 11 . . . . 5 (𝜑 → (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈)))
3534rexlimdv 3211 . . . 4 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏𝑋𝑈))
3632, 35impbid 211 . . 3 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = 𝑏))
37 eqid 2738 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
3810, 4, 19, 7, 37lmod0vs 20071 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ( 0 · 𝑍) = (0g𝑊))
393, 16, 38syl2anc 583 . . . . . . . . 9 (𝜑 → ( 0 · 𝑍) = (0g𝑊))
4039adantr 480 . . . . . . . 8 ((𝜑𝑏𝑈) → ( 0 · 𝑍) = (0g𝑊))
4140oveq2d 7271 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = (𝑏 + (0g𝑊)))
421adantr 480 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑊 ∈ LVec)
4342, 2syl 17 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑊 ∈ LMod)
44 eqid 2738 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4544, 14, 3, 15lshplss 36922 . . . . . . . . 9 (𝜑𝑈 ∈ (LSubSp‘𝑊))
4610, 44lssel 20114 . . . . . . . . 9 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑏𝑈) → 𝑏𝑉)
4745, 46sylan 579 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑏𝑉)
4810, 11, 37lmod0vrid 20069 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑏𝑉) → (𝑏 + (0g𝑊)) = 𝑏)
4943, 47, 48syl2anc 583 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + (0g𝑊)) = 𝑏)
5041, 49eqtrd 2778 . . . . . 6 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = 𝑏)
5150eqeq2d 2749 . . . . 5 ((𝜑𝑏𝑈) → (𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ 𝑋 = 𝑏))
5251bicomd 222 . . . 4 ((𝜑𝑏𝑈) → (𝑋 = 𝑏𝑋 = (𝑏 + ( 0 · 𝑍))))
5352rexbidva 3224 . . 3 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
5436, 53bitrd 278 . 2 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
55 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5655rexbidv 3225 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5756riotabidv 7214 . . . . . 6 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
58 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
59 riotaex 7216 . . . . . 6 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
6057, 58, 59fvmpt 6857 . . . . 5 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
61 oveq1 7262 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 + (𝑘 · 𝑍)) = (𝑏 + (𝑘 · 𝑍)))
6261eqeq2d 2749 . . . . . . . 8 (𝑦 = 𝑏 → (𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6362cbvrexvw 3373 . . . . . . 7 (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6463a1i 11 . . . . . 6 (𝑘𝐾 → (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6564riotabiia 7233 . . . . 5 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6660, 65eqtrdi 2795 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6717, 66syl 17 . . 3 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6867eqeq1d 2740 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
6926, 54, 683bitr4d 310 1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  ∃!wreu 3065  {csn 4558  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918
This theorem is referenced by:  lshpkr  37058
  Copyright terms: Public domain W3C validator