Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Structured version   Visualization version   GIF version

Theorem lshpkrlem1 37572
Description: Lemma for lshpkrex 37580. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20567 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
54lmodfgrp 20331 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
6 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
7 lshpkrlem.o . . . . 5 0 = (0g𝐷)
86, 7grpidcl 18778 . . . 4 (𝐷 ∈ Grp → 0𝐾)
93, 5, 83syl 18 . . 3 (𝜑0𝐾)
10 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
11 lshpkrlem.a . . . 4 + = (+g𝑊)
12 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
13 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
14 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.x . . . 4 (𝜑𝑋𝑉)
18 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
19 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 37571 . . 3 (𝜑 → ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
21 oveq1 7364 . . . . . . 7 (𝑘 = 0 → (𝑘 · 𝑍) = ( 0 · 𝑍))
2221oveq2d 7373 . . . . . 6 (𝑘 = 0 → (𝑏 + (𝑘 · 𝑍)) = (𝑏 + ( 0 · 𝑍)))
2322eqeq2d 2747 . . . . 5 (𝑘 = 0 → (𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + ( 0 · 𝑍))))
2423rexbidv 3175 . . . 4 (𝑘 = 0 → (∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
2524riota2 7339 . . 3 (( 0𝐾 ∧ ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
269, 20, 25syl2anc 584 . 2 (𝜑 → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
27 simpr 485 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋𝑈)
28 eqidd 2737 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋 = 𝑋)
29 eqeq2 2748 . . . . . . 7 (𝑏 = 𝑋 → (𝑋 = 𝑏𝑋 = 𝑋))
3029rspcev 3581 . . . . . 6 ((𝑋𝑈𝑋 = 𝑋) → ∃𝑏𝑈 𝑋 = 𝑏)
3127, 28, 30syl2anc 584 . . . . 5 ((𝜑𝑋𝑈) → ∃𝑏𝑈 𝑋 = 𝑏)
3231ex 413 . . . 4 (𝜑 → (𝑋𝑈 → ∃𝑏𝑈 𝑋 = 𝑏))
33 eleq1a 2833 . . . . . 6 (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈))
3433a1i 11 . . . . 5 (𝜑 → (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈)))
3534rexlimdv 3150 . . . 4 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏𝑋𝑈))
3632, 35impbid 211 . . 3 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = 𝑏))
37 eqid 2736 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
3810, 4, 19, 7, 37lmod0vs 20355 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ( 0 · 𝑍) = (0g𝑊))
393, 16, 38syl2anc 584 . . . . . . . . 9 (𝜑 → ( 0 · 𝑍) = (0g𝑊))
4039adantr 481 . . . . . . . 8 ((𝜑𝑏𝑈) → ( 0 · 𝑍) = (0g𝑊))
4140oveq2d 7373 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = (𝑏 + (0g𝑊)))
421adantr 481 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑊 ∈ LVec)
4342, 2syl 17 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑊 ∈ LMod)
44 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4544, 14, 3, 15lshplss 37443 . . . . . . . . 9 (𝜑𝑈 ∈ (LSubSp‘𝑊))
4610, 44lssel 20398 . . . . . . . . 9 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑏𝑈) → 𝑏𝑉)
4745, 46sylan 580 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑏𝑉)
4810, 11, 37lmod0vrid 20353 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑏𝑉) → (𝑏 + (0g𝑊)) = 𝑏)
4943, 47, 48syl2anc 584 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + (0g𝑊)) = 𝑏)
5041, 49eqtrd 2776 . . . . . 6 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = 𝑏)
5150eqeq2d 2747 . . . . 5 ((𝜑𝑏𝑈) → (𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ 𝑋 = 𝑏))
5251bicomd 222 . . . 4 ((𝜑𝑏𝑈) → (𝑋 = 𝑏𝑋 = (𝑏 + ( 0 · 𝑍))))
5352rexbidva 3173 . . 3 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
5436, 53bitrd 278 . 2 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
55 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5655rexbidv 3175 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5756riotabidv 7315 . . . . . 6 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
58 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
59 riotaex 7317 . . . . . 6 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
6057, 58, 59fvmpt 6948 . . . . 5 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
61 oveq1 7364 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 + (𝑘 · 𝑍)) = (𝑏 + (𝑘 · 𝑍)))
6261eqeq2d 2747 . . . . . . . 8 (𝑦 = 𝑏 → (𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6362cbvrexvw 3226 . . . . . . 7 (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6463a1i 11 . . . . . 6 (𝑘𝐾 → (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6564riotabiia 7334 . . . . 5 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6660, 65eqtrdi 2792 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6717, 66syl 17 . . 3 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6867eqeq1d 2738 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
6926, 54, 683bitr4d 310 1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  ∃!wreu 3351  {csn 4586  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Grpcgrp 18748  LSSumclsm 19416  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  LSHypclsh 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lshyp 37439
This theorem is referenced by:  lshpkr  37579
  Copyright terms: Public domain W3C validator