Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Structured version   Visualization version   GIF version

Theorem lshpkrlem1 36318
Description: Lemma for lshpkrex 36326. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19873 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
54lmodfgrp 19638 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
6 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
7 lshpkrlem.o . . . . 5 0 = (0g𝐷)
86, 7grpidcl 18129 . . . 4 (𝐷 ∈ Grp → 0𝐾)
93, 5, 83syl 18 . . 3 (𝜑0𝐾)
10 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
11 lshpkrlem.a . . . 4 + = (+g𝑊)
12 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
13 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
14 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.x . . . 4 (𝜑𝑋𝑉)
18 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
19 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 36317 . . 3 (𝜑 → ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
21 oveq1 7153 . . . . . . 7 (𝑘 = 0 → (𝑘 · 𝑍) = ( 0 · 𝑍))
2221oveq2d 7162 . . . . . 6 (𝑘 = 0 → (𝑏 + (𝑘 · 𝑍)) = (𝑏 + ( 0 · 𝑍)))
2322eqeq2d 2835 . . . . 5 (𝑘 = 0 → (𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + ( 0 · 𝑍))))
2423rexbidv 3290 . . . 4 (𝑘 = 0 → (∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
2524riota2 7129 . . 3 (( 0𝐾 ∧ ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
269, 20, 25syl2anc 587 . 2 (𝜑 → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
27 simpr 488 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋𝑈)
28 eqidd 2825 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋 = 𝑋)
29 eqeq2 2836 . . . . . . 7 (𝑏 = 𝑋 → (𝑋 = 𝑏𝑋 = 𝑋))
3029rspcev 3609 . . . . . 6 ((𝑋𝑈𝑋 = 𝑋) → ∃𝑏𝑈 𝑋 = 𝑏)
3127, 28, 30syl2anc 587 . . . . 5 ((𝜑𝑋𝑈) → ∃𝑏𝑈 𝑋 = 𝑏)
3231ex 416 . . . 4 (𝜑 → (𝑋𝑈 → ∃𝑏𝑈 𝑋 = 𝑏))
33 eleq1a 2911 . . . . . 6 (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈))
3433a1i 11 . . . . 5 (𝜑 → (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈)))
3534rexlimdv 3276 . . . 4 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏𝑋𝑈))
3632, 35impbid 215 . . 3 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = 𝑏))
37 eqid 2824 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
3810, 4, 19, 7, 37lmod0vs 19662 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ( 0 · 𝑍) = (0g𝑊))
393, 16, 38syl2anc 587 . . . . . . . . 9 (𝜑 → ( 0 · 𝑍) = (0g𝑊))
4039adantr 484 . . . . . . . 8 ((𝜑𝑏𝑈) → ( 0 · 𝑍) = (0g𝑊))
4140oveq2d 7162 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = (𝑏 + (0g𝑊)))
421adantr 484 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑊 ∈ LVec)
4342, 2syl 17 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑊 ∈ LMod)
44 eqid 2824 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4544, 14, 3, 15lshplss 36189 . . . . . . . . 9 (𝜑𝑈 ∈ (LSubSp‘𝑊))
4610, 44lssel 19704 . . . . . . . . 9 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑏𝑈) → 𝑏𝑉)
4745, 46sylan 583 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑏𝑉)
4810, 11, 37lmod0vrid 19660 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑏𝑉) → (𝑏 + (0g𝑊)) = 𝑏)
4943, 47, 48syl2anc 587 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + (0g𝑊)) = 𝑏)
5041, 49eqtrd 2859 . . . . . 6 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = 𝑏)
5150eqeq2d 2835 . . . . 5 ((𝜑𝑏𝑈) → (𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ 𝑋 = 𝑏))
5251bicomd 226 . . . 4 ((𝜑𝑏𝑈) → (𝑋 = 𝑏𝑋 = (𝑏 + ( 0 · 𝑍))))
5352rexbidva 3289 . . 3 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
5436, 53bitrd 282 . 2 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
55 eqeq1 2828 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5655rexbidv 3290 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5756riotabidv 7106 . . . . . 6 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
58 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
59 riotaex 7108 . . . . . 6 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
6057, 58, 59fvmpt 6757 . . . . 5 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
61 oveq1 7153 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 + (𝑘 · 𝑍)) = (𝑏 + (𝑘 · 𝑍)))
6261eqeq2d 2835 . . . . . . . 8 (𝑦 = 𝑏 → (𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6362cbvrexvw 3436 . . . . . . 7 (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6463a1i 11 . . . . . 6 (𝑘𝐾 → (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6564riotabiia 7124 . . . . 5 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6660, 65syl6eq 2875 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6717, 66syl 17 . . 3 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6867eqeq1d 2826 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
6926, 54, 683bitr4d 314 1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3134  ∃!wreu 3135  {csn 4550  cmpt 5133  cfv 6344  crio 7103  (class class class)co 7146  Basecbs 16481  +gcplusg 16563  Scalarcsca 16566   ·𝑠 cvsca 16567  0gc0g 16711  Grpcgrp 18101  LSSumclsm 18757  LModclmod 19629  LSubSpclss 19698  LSpanclspn 19738  LVecclvec 19869  LSHypclsh 36183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-grp 18104  df-minusg 18105  df-sbg 18106  df-subg 18274  df-cntz 18445  df-lsm 18759  df-cmn 18906  df-abl 18907  df-mgp 19238  df-ur 19250  df-ring 19297  df-oppr 19371  df-dvdsr 19389  df-unit 19390  df-invr 19420  df-drng 19499  df-lmod 19631  df-lss 19699  df-lsp 19739  df-lvec 19870  df-lshyp 36185
This theorem is referenced by:  lshpkr  36325
  Copyright terms: Public domain W3C validator