Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem1 Structured version   Visualization version   GIF version

Theorem lshpkrlem1 37124
Description: Lemma for lshpkrex 37132. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20368 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
54lmodfgrp 20132 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
6 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
7 lshpkrlem.o . . . . 5 0 = (0g𝐷)
86, 7grpidcl 18607 . . . 4 (𝐷 ∈ Grp → 0𝐾)
93, 5, 83syl 18 . . 3 (𝜑0𝐾)
10 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
11 lshpkrlem.a . . . 4 + = (+g𝑊)
12 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
13 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
14 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.x . . . 4 (𝜑𝑋𝑉)
18 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
19 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
2010, 11, 12, 13, 14, 1, 15, 16, 17, 18, 4, 6, 19lshpsmreu 37123 . . 3 (𝜑 → ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
21 oveq1 7282 . . . . . . 7 (𝑘 = 0 → (𝑘 · 𝑍) = ( 0 · 𝑍))
2221oveq2d 7291 . . . . . 6 (𝑘 = 0 → (𝑏 + (𝑘 · 𝑍)) = (𝑏 + ( 0 · 𝑍)))
2322eqeq2d 2749 . . . . 5 (𝑘 = 0 → (𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + ( 0 · 𝑍))))
2423rexbidv 3226 . . . 4 (𝑘 = 0 → (∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
2524riota2 7258 . . 3 (( 0𝐾 ∧ ∃!𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
269, 20, 25syl2anc 584 . 2 (𝜑 → (∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
27 simpr 485 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋𝑈)
28 eqidd 2739 . . . . . 6 ((𝜑𝑋𝑈) → 𝑋 = 𝑋)
29 eqeq2 2750 . . . . . . 7 (𝑏 = 𝑋 → (𝑋 = 𝑏𝑋 = 𝑋))
3029rspcev 3561 . . . . . 6 ((𝑋𝑈𝑋 = 𝑋) → ∃𝑏𝑈 𝑋 = 𝑏)
3127, 28, 30syl2anc 584 . . . . 5 ((𝜑𝑋𝑈) → ∃𝑏𝑈 𝑋 = 𝑏)
3231ex 413 . . . 4 (𝜑 → (𝑋𝑈 → ∃𝑏𝑈 𝑋 = 𝑏))
33 eleq1a 2834 . . . . . 6 (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈))
3433a1i 11 . . . . 5 (𝜑 → (𝑏𝑈 → (𝑋 = 𝑏𝑋𝑈)))
3534rexlimdv 3212 . . . 4 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏𝑋𝑈))
3632, 35impbid 211 . . 3 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = 𝑏))
37 eqid 2738 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
3810, 4, 19, 7, 37lmod0vs 20156 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ( 0 · 𝑍) = (0g𝑊))
393, 16, 38syl2anc 584 . . . . . . . . 9 (𝜑 → ( 0 · 𝑍) = (0g𝑊))
4039adantr 481 . . . . . . . 8 ((𝜑𝑏𝑈) → ( 0 · 𝑍) = (0g𝑊))
4140oveq2d 7291 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = (𝑏 + (0g𝑊)))
421adantr 481 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑊 ∈ LVec)
4342, 2syl 17 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑊 ∈ LMod)
44 eqid 2738 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4544, 14, 3, 15lshplss 36995 . . . . . . . . 9 (𝜑𝑈 ∈ (LSubSp‘𝑊))
4610, 44lssel 20199 . . . . . . . . 9 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑏𝑈) → 𝑏𝑉)
4745, 46sylan 580 . . . . . . . 8 ((𝜑𝑏𝑈) → 𝑏𝑉)
4810, 11, 37lmod0vrid 20154 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑏𝑉) → (𝑏 + (0g𝑊)) = 𝑏)
4943, 47, 48syl2anc 584 . . . . . . 7 ((𝜑𝑏𝑈) → (𝑏 + (0g𝑊)) = 𝑏)
5041, 49eqtrd 2778 . . . . . 6 ((𝜑𝑏𝑈) → (𝑏 + ( 0 · 𝑍)) = 𝑏)
5150eqeq2d 2749 . . . . 5 ((𝜑𝑏𝑈) → (𝑋 = (𝑏 + ( 0 · 𝑍)) ↔ 𝑋 = 𝑏))
5251bicomd 222 . . . 4 ((𝜑𝑏𝑈) → (𝑋 = 𝑏𝑋 = (𝑏 + ( 0 · 𝑍))))
5352rexbidva 3225 . . 3 (𝜑 → (∃𝑏𝑈 𝑋 = 𝑏 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
5436, 53bitrd 278 . 2 (𝜑 → (𝑋𝑈 ↔ ∃𝑏𝑈 𝑋 = (𝑏 + ( 0 · 𝑍))))
55 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5655rexbidv 3226 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5756riotabidv 7234 . . . . . 6 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
58 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
59 riotaex 7236 . . . . . 6 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
6057, 58, 59fvmpt 6875 . . . . 5 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
61 oveq1 7282 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 + (𝑘 · 𝑍)) = (𝑏 + (𝑘 · 𝑍)))
6261eqeq2d 2749 . . . . . . . 8 (𝑦 = 𝑏 → (𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6362cbvrexvw 3384 . . . . . . 7 (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6463a1i 11 . . . . . 6 (𝑘𝐾 → (∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6564riotabiia 7253 . . . . 5 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍)))
6660, 65eqtrdi 2794 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6717, 66syl 17 . . 3 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))))
6867eqeq1d 2740 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑘𝐾𝑏𝑈 𝑋 = (𝑏 + (𝑘 · 𝑍))) = 0 ))
6926, 54, 683bitr4d 311 1 (𝜑 → (𝑋𝑈 ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  ∃!wreu 3066  {csn 4561  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  LSSumclsm 19239  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364  LSHypclsh 36989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lshyp 36991
This theorem is referenced by:  lshpkr  37131
  Copyright terms: Public domain W3C validator