Step | Hyp | Ref
| Expression |
1 | | odulub.l |
. 2
⊢ 𝐿 = (glb‘𝑂) |
2 | | vex 3435 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
3 | | vex 3435 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
4 | 2, 3 | brcnv 5790 |
. . . . . . . . . 10
⊢ (𝑐◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑐) |
5 | 4 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ↔ ∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐) |
6 | | vex 3435 |
. . . . . . . . . . . . 13
⊢ 𝑑 ∈ V |
7 | 2, 6 | brcnv 5790 |
. . . . . . . . . . . 12
⊢ (𝑐◡(le‘𝑂)𝑑 ↔ 𝑑(le‘𝑂)𝑐) |
8 | 7 | ralbii 3093 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑑 ↔ ∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐) |
9 | 3, 6 | brcnv 5790 |
. . . . . . . . . . 11
⊢ (𝑏◡(le‘𝑂)𝑑 ↔ 𝑑(le‘𝑂)𝑏) |
10 | 8, 9 | imbi12i 351 |
. . . . . . . . . 10
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑) ↔ (∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) |
11 | 10 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑) ↔ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) |
12 | 5, 11 | anbi12i 627 |
. . . . . . . 8
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑏 ∈ (Base‘𝑂) → ((∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) |
14 | 13 | riotabiia 7249 |
. . . . . 6
⊢
(℩𝑏
∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))) = (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
15 | 14 | mpteq2i 5184 |
. . . . 5
⊢ (𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) = (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) |
16 | 12 | reubii 3324 |
. . . . . 6
⊢
(∃!𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
17 | 16 | abbii 2810 |
. . . . 5
⊢ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))} = {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))} |
18 | 15, 17 | reseq12i 5888 |
. . . 4
⊢ ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))}) |
19 | 18 | eqcomi 2749 |
. . 3
⊢ ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))}) |
20 | | eqid 2740 |
. . . 4
⊢
(Base‘𝑂) =
(Base‘𝑂) |
21 | | eqid 2740 |
. . . 4
⊢
(le‘𝑂) =
(le‘𝑂) |
22 | | eqid 2740 |
. . . 4
⊢
(glb‘𝑂) =
(glb‘𝑂) |
23 | | biid 260 |
. . . 4
⊢
((∀𝑐 ∈
𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
24 | | id 22 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) |
25 | 20, 21, 22, 23, 24 | glbfval 18079 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (glb‘𝑂) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))})) |
26 | | oduglb.d |
. . . . 5
⊢ 𝐷 = (ODual‘𝑂) |
27 | 26 | fvexi 6785 |
. . . 4
⊢ 𝐷 ∈ V |
28 | 26, 20 | odubas 18007 |
. . . . 5
⊢
(Base‘𝑂) =
(Base‘𝐷) |
29 | 26, 21 | oduleval 18005 |
. . . . 5
⊢ ◡(le‘𝑂) = (le‘𝐷) |
30 | | eqid 2740 |
. . . . 5
⊢
(lub‘𝐷) =
(lub‘𝐷) |
31 | | biid 260 |
. . . . 5
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))) |
32 | | id 22 |
. . . . 5
⊢ (𝐷 ∈ V → 𝐷 ∈ V) |
33 | 28, 29, 30, 31, 32 | lubfval 18066 |
. . . 4
⊢ (𝐷 ∈ V →
(lub‘𝐷) = ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))})) |
34 | 27, 33 | mp1i 13 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))})) |
35 | 19, 25, 34 | 3eqtr4a 2806 |
. 2
⊢ (𝑂 ∈ 𝑉 → (glb‘𝑂) = (lub‘𝐷)) |
36 | 1, 35 | eqtrid 2792 |
1
⊢ (𝑂 ∈ 𝑉 → 𝐿 = (lub‘𝐷)) |