MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odulub Structured version   Visualization version   GIF version

Theorem odulub 17495
Description: Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
odulub.l 𝐿 = (glb‘𝑂)
Assertion
Ref Expression
odulub (𝑂𝑉𝐿 = (lub‘𝐷))

Proof of Theorem odulub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odulub.l . 2 𝐿 = (glb‘𝑂)
2 vex 3418 . . . . . . . . . . 11 𝑐 ∈ V
3 vex 3418 . . . . . . . . . . 11 𝑏 ∈ V
42, 3brcnv 5538 . . . . . . . . . 10 (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐)
54ralbii 3190 . . . . . . . . 9 (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ↔ ∀𝑐𝑎 𝑏(le‘𝑂)𝑐)
6 vex 3418 . . . . . . . . . . . . 13 𝑑 ∈ V
72, 6brcnv 5538 . . . . . . . . . . . 12 (𝑐(le‘𝑂)𝑑𝑑(le‘𝑂)𝑐)
87ralbii 3190 . . . . . . . . . . 11 (∀𝑐𝑎 𝑐(le‘𝑂)𝑑 ↔ ∀𝑐𝑎 𝑑(le‘𝑂)𝑐)
93, 6brcnv 5538 . . . . . . . . . . 11 (𝑏(le‘𝑂)𝑑𝑑(le‘𝑂)𝑏)
108, 9imbi12i 342 . . . . . . . . . 10 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ (∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
1110ralbii 3190 . . . . . . . . 9 (∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
125, 11anbi12i 622 . . . . . . . 8 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1312a1i 11 . . . . . . 7 (𝑏 ∈ (Base‘𝑂) → ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1413riotabiia 6884 . . . . . 6 (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))) = (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1514mpteq2i 4965 . . . . 5 (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) = (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1612reubii 3341 . . . . . 6 (∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1716abbii 2945 . . . . 5 {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))} = {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}
1815, 17reseq12i 5628 . . . 4 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))})
1918eqcomi 2835 . . 3 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))})
20 eqid 2826 . . . 4 (Base‘𝑂) = (Base‘𝑂)
21 eqid 2826 . . . 4 (le‘𝑂) = (le‘𝑂)
22 eqid 2826 . . . 4 (glb‘𝑂) = (glb‘𝑂)
23 biid 253 . . . 4 ((∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
24 id 22 . . . 4 (𝑂𝑉𝑂𝑉)
2520, 21, 22, 23, 24glbfval 17345 . . 3 (𝑂𝑉 → (glb‘𝑂) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}))
26 oduglb.d . . . . 5 𝐷 = (ODual‘𝑂)
2726fvexi 6448 . . . 4 𝐷 ∈ V
2826, 20odubas 17487 . . . . 5 (Base‘𝑂) = (Base‘𝐷)
2926, 21oduleval 17485 . . . . 5 (le‘𝑂) = (le‘𝐷)
30 eqid 2826 . . . . 5 (lub‘𝐷) = (lub‘𝐷)
31 biid 253 . . . . 5 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))
32 id 22 . . . . 5 (𝐷 ∈ V → 𝐷 ∈ V)
3328, 29, 30, 31, 32lubfval 17332 . . . 4 (𝐷 ∈ V → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3427, 33mp1i 13 . . 3 (𝑂𝑉 → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3519, 25, 343eqtr4a 2888 . 2 (𝑂𝑉 → (glb‘𝑂) = (lub‘𝐷))
361, 35syl5eq 2874 1 (𝑂𝑉𝐿 = (lub‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  {cab 2812  wral 3118  ∃!wreu 3120  Vcvv 3415  𝒫 cpw 4379   class class class wbr 4874  cmpt 4953  ccnv 5342  cres 5345  cfv 6124  crio 6866  Basecbs 16223  lecple 16313  lubclub 17296  glbcglb 17297  ODualcodu 17482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-dec 11823  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ple 16326  df-lub 17328  df-glb 17329  df-odu 17483
This theorem is referenced by:  odujoin  17496  oduclatb  17498  posglbd  17504
  Copyright terms: Public domain W3C validator