| Step | Hyp | Ref
| Expression |
| 1 | | odulub.l |
. 2
⊢ 𝐿 = (glb‘𝑂) |
| 2 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
| 3 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
| 4 | 2, 3 | brcnv 5893 |
. . . . . . . . . 10
⊢ (𝑐◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑐) |
| 5 | 4 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ↔ ∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐) |
| 6 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑑 ∈ V |
| 7 | 2, 6 | brcnv 5893 |
. . . . . . . . . . . 12
⊢ (𝑐◡(le‘𝑂)𝑑 ↔ 𝑑(le‘𝑂)𝑐) |
| 8 | 7 | ralbii 3093 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑑 ↔ ∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐) |
| 9 | 3, 6 | brcnv 5893 |
. . . . . . . . . . 11
⊢ (𝑏◡(le‘𝑂)𝑑 ↔ 𝑑(le‘𝑂)𝑏) |
| 10 | 8, 9 | imbi12i 350 |
. . . . . . . . . 10
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑) ↔ (∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) |
| 11 | 10 | ralbii 3093 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑) ↔ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) |
| 12 | 5, 11 | anbi12i 628 |
. . . . . . . 8
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑏 ∈ (Base‘𝑂) → ((∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) |
| 14 | 13 | riotabiia 7408 |
. . . . . 6
⊢
(℩𝑏
∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))) = (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
| 15 | 14 | mpteq2i 5247 |
. . . . 5
⊢ (𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) = (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) |
| 16 | 12 | reubii 3389 |
. . . . . 6
⊢
(∃!𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
| 17 | 16 | abbii 2809 |
. . . . 5
⊢ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))} = {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))} |
| 18 | 15, 17 | reseq12i 5995 |
. . . 4
⊢ ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))}) |
| 19 | 18 | eqcomi 2746 |
. . 3
⊢ ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))}) |
| 20 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑂) =
(Base‘𝑂) |
| 21 | | eqid 2737 |
. . . 4
⊢
(le‘𝑂) =
(le‘𝑂) |
| 22 | | eqid 2737 |
. . . 4
⊢
(glb‘𝑂) =
(glb‘𝑂) |
| 23 | | biid 261 |
. . . 4
⊢
((∀𝑐 ∈
𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)) ↔ (∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))) |
| 24 | | id 22 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) |
| 25 | 20, 21, 22, 23, 24 | glbfval 18408 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (glb‘𝑂) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑑(le‘𝑂)𝑐 → 𝑑(le‘𝑂)𝑏))})) |
| 26 | | oduglb.d |
. . . . 5
⊢ 𝐷 = (ODual‘𝑂) |
| 27 | 26 | fvexi 6920 |
. . . 4
⊢ 𝐷 ∈ V |
| 28 | 26, 20 | odubas 18336 |
. . . . 5
⊢
(Base‘𝑂) =
(Base‘𝐷) |
| 29 | 26, 21 | oduleval 18334 |
. . . . 5
⊢ ◡(le‘𝑂) = (le‘𝐷) |
| 30 | | eqid 2737 |
. . . . 5
⊢
(lub‘𝐷) =
(lub‘𝐷) |
| 31 | | biid 261 |
. . . . 5
⊢
((∀𝑐 ∈
𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)) ↔ (∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))) |
| 32 | | id 22 |
. . . . 5
⊢ (𝐷 ∈ V → 𝐷 ∈ V) |
| 33 | 28, 29, 30, 31, 32 | lubfval 18395 |
. . . 4
⊢ (𝐷 ∈ V →
(lub‘𝐷) = ((𝑎 ∈ 𝒫
(Base‘𝑂) ↦
(℩𝑏 ∈
(Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))})) |
| 34 | 27, 33 | mp1i 13 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (℩𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐 ∈ 𝑎 𝑐◡(le‘𝑂)𝑑 → 𝑏◡(le‘𝑂)𝑑))})) |
| 35 | 19, 25, 34 | 3eqtr4a 2803 |
. 2
⊢ (𝑂 ∈ 𝑉 → (glb‘𝑂) = (lub‘𝐷)) |
| 36 | 1, 35 | eqtrid 2789 |
1
⊢ (𝑂 ∈ 𝑉 → 𝐿 = (lub‘𝐷)) |