MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odulub Structured version   Visualization version   GIF version

Theorem odulub 18342
Description: Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
odulub.l 𝐿 = (glb‘𝑂)
Assertion
Ref Expression
odulub (𝑂𝑉𝐿 = (lub‘𝐷))

Proof of Theorem odulub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odulub.l . 2 𝐿 = (glb‘𝑂)
2 vex 3448 . . . . . . . . . . 11 𝑐 ∈ V
3 vex 3448 . . . . . . . . . . 11 𝑏 ∈ V
42, 3brcnv 5836 . . . . . . . . . 10 (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐)
54ralbii 3075 . . . . . . . . 9 (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ↔ ∀𝑐𝑎 𝑏(le‘𝑂)𝑐)
6 vex 3448 . . . . . . . . . . . . 13 𝑑 ∈ V
72, 6brcnv 5836 . . . . . . . . . . . 12 (𝑐(le‘𝑂)𝑑𝑑(le‘𝑂)𝑐)
87ralbii 3075 . . . . . . . . . . 11 (∀𝑐𝑎 𝑐(le‘𝑂)𝑑 ↔ ∀𝑐𝑎 𝑑(le‘𝑂)𝑐)
93, 6brcnv 5836 . . . . . . . . . . 11 (𝑏(le‘𝑂)𝑑𝑑(le‘𝑂)𝑏)
108, 9imbi12i 350 . . . . . . . . . 10 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ (∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
1110ralbii 3075 . . . . . . . . 9 (∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
125, 11anbi12i 628 . . . . . . . 8 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1312a1i 11 . . . . . . 7 (𝑏 ∈ (Base‘𝑂) → ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1413riotabiia 7346 . . . . . 6 (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))) = (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1514mpteq2i 5198 . . . . 5 (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) = (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1612reubii 3360 . . . . . 6 (∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1716abbii 2796 . . . . 5 {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))} = {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}
1815, 17reseq12i 5937 . . . 4 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))})
1918eqcomi 2738 . . 3 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))})
20 eqid 2729 . . . 4 (Base‘𝑂) = (Base‘𝑂)
21 eqid 2729 . . . 4 (le‘𝑂) = (le‘𝑂)
22 eqid 2729 . . . 4 (glb‘𝑂) = (glb‘𝑂)
23 biid 261 . . . 4 ((∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
24 id 22 . . . 4 (𝑂𝑉𝑂𝑉)
2520, 21, 22, 23, 24glbfval 18298 . . 3 (𝑂𝑉 → (glb‘𝑂) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}))
26 oduglb.d . . . . 5 𝐷 = (ODual‘𝑂)
2726fvexi 6854 . . . 4 𝐷 ∈ V
2826, 20odubas 18228 . . . . 5 (Base‘𝑂) = (Base‘𝐷)
2926, 21oduleval 18226 . . . . 5 (le‘𝑂) = (le‘𝐷)
30 eqid 2729 . . . . 5 (lub‘𝐷) = (lub‘𝐷)
31 biid 261 . . . . 5 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))
32 id 22 . . . . 5 (𝐷 ∈ V → 𝐷 ∈ V)
3328, 29, 30, 31, 32lubfval 18285 . . . 4 (𝐷 ∈ V → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3427, 33mp1i 13 . . 3 (𝑂𝑉 → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3519, 25, 343eqtr4a 2790 . 2 (𝑂𝑉 → (glb‘𝑂) = (lub‘𝐷))
361, 35eqtrid 2776 1 (𝑂𝑉𝐿 = (lub‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  ∃!wreu 3349  Vcvv 3444  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ccnv 5630  cres 5633  cfv 6499  crio 7325  Basecbs 17155  lecple 17203  ODualcodu 18223  lubclub 18246  glbcglb 18247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ple 17216  df-odu 18224  df-lub 18281  df-glb 18282
This theorem is referenced by:  odujoin  18343  posglbdg  18350  oduclatb  18442  glbprlem  48926
  Copyright terms: Public domain W3C validator