MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odulub Structured version   Visualization version   GIF version

Theorem odulub 18366
Description: Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
odulub.l 𝐿 = (glb‘𝑂)
Assertion
Ref Expression
odulub (𝑂𝑉𝐿 = (lub‘𝐷))

Proof of Theorem odulub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odulub.l . 2 𝐿 = (glb‘𝑂)
2 vex 3451 . . . . . . . . . . 11 𝑐 ∈ V
3 vex 3451 . . . . . . . . . . 11 𝑏 ∈ V
42, 3brcnv 5846 . . . . . . . . . 10 (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐)
54ralbii 3075 . . . . . . . . 9 (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ↔ ∀𝑐𝑎 𝑏(le‘𝑂)𝑐)
6 vex 3451 . . . . . . . . . . . . 13 𝑑 ∈ V
72, 6brcnv 5846 . . . . . . . . . . . 12 (𝑐(le‘𝑂)𝑑𝑑(le‘𝑂)𝑐)
87ralbii 3075 . . . . . . . . . . 11 (∀𝑐𝑎 𝑐(le‘𝑂)𝑑 ↔ ∀𝑐𝑎 𝑑(le‘𝑂)𝑐)
93, 6brcnv 5846 . . . . . . . . . . 11 (𝑏(le‘𝑂)𝑑𝑑(le‘𝑂)𝑏)
108, 9imbi12i 350 . . . . . . . . . 10 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ (∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
1110ralbii 3075 . . . . . . . . 9 (∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑) ↔ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))
125, 11anbi12i 628 . . . . . . . 8 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1312a1i 11 . . . . . . 7 (𝑏 ∈ (Base‘𝑂) → ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1413riotabiia 7364 . . . . . 6 (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))) = (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1514mpteq2i 5203 . . . . 5 (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) = (𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))))
1612reubii 3363 . . . . . 6 (∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
1716abbii 2796 . . . . 5 {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))} = {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}
1815, 17reseq12i 5948 . . . 4 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))})
1918eqcomi 2738 . . 3 ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))})
20 eqid 2729 . . . 4 (Base‘𝑂) = (Base‘𝑂)
21 eqid 2729 . . . 4 (le‘𝑂) = (le‘𝑂)
22 eqid 2729 . . . 4 (glb‘𝑂) = (glb‘𝑂)
23 biid 261 . . . 4 ((∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)) ↔ (∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))
24 id 22 . . . 4 (𝑂𝑉𝑂𝑉)
2520, 21, 22, 23, 24glbfval 18322 . . 3 (𝑂𝑉 → (glb‘𝑂) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑏(le‘𝑂)𝑐 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑑(le‘𝑂)𝑐𝑑(le‘𝑂)𝑏))}))
26 oduglb.d . . . . 5 𝐷 = (ODual‘𝑂)
2726fvexi 6872 . . . 4 𝐷 ∈ V
2826, 20odubas 18252 . . . . 5 (Base‘𝑂) = (Base‘𝐷)
2926, 21oduleval 18250 . . . . 5 (le‘𝑂) = (le‘𝐷)
30 eqid 2729 . . . . 5 (lub‘𝐷) = (lub‘𝐷)
31 biid 261 . . . . 5 ((∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)) ↔ (∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))
32 id 22 . . . . 5 (𝐷 ∈ V → 𝐷 ∈ V)
3328, 29, 30, 31, 32lubfval 18309 . . . 4 (𝐷 ∈ V → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3427, 33mp1i 13 . . 3 (𝑂𝑉 → (lub‘𝐷) = ((𝑎 ∈ 𝒫 (Base‘𝑂) ↦ (𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑)))) ↾ {𝑎 ∣ ∃!𝑏 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑏 ∧ ∀𝑑 ∈ (Base‘𝑂)(∀𝑐𝑎 𝑐(le‘𝑂)𝑑𝑏(le‘𝑂)𝑑))}))
3519, 25, 343eqtr4a 2790 . 2 (𝑂𝑉 → (glb‘𝑂) = (lub‘𝐷))
361, 35eqtrid 2776 1 (𝑂𝑉𝐿 = (lub‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  ∃!wreu 3352  Vcvv 3447  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  cfv 6511  crio 7343  Basecbs 17179  lecple 17227  ODualcodu 18247  lubclub 18270  glbcglb 18271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ple 17240  df-odu 18248  df-lub 18305  df-glb 18306
This theorem is referenced by:  odujoin  18367  posglbdg  18374  oduclatb  18466  glbprlem  48953
  Copyright terms: Public domain W3C validator