Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35 Structured version   Visualization version   GIF version

Theorem cdlemk35 39783
Description: Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 39782 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b 𝐡 = (Baseβ€˜πΎ)
cdlemk4.l ≀ = (leβ€˜πΎ)
cdlemk4.j ∨ = (joinβ€˜πΎ)
cdlemk4.m ∧ = (meetβ€˜πΎ)
cdlemk4.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk4.h 𝐻 = (LHypβ€˜πΎ)
cdlemk4.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk4.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk4.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk4.y π‘Œ = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
cdlemk4.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk35 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ 𝑋 ∈ 𝑇)
Distinct variable groups:   𝑧,𝑏, ∧   ≀ ,𝑏,𝑧   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏,𝑧   𝐾,𝑏,𝑧   𝑁,𝑏,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑏)   π‘Œ(𝑧,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk35
Dummy variables 𝑑 𝑒 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemk4.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemk4.l . . . 4 ≀ = (leβ€˜πΎ)
3 cdlemk4.j . . . 4 ∨ = (joinβ€˜πΎ)
4 cdlemk4.m . . . 4 ∧ = (meetβ€˜πΎ)
5 cdlemk4.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 cdlemk4.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 cdlemk4.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
8 cdlemk4.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
9 eqid 2733 . . . 4 (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹)))))) = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
10 eqid 2733 . . . 4 (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑)))))) = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))
11 eqid 2733 . . . 4 (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ 𝑧 = (𝑏(𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))𝐺))) = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ 𝑧 = (𝑏(𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))𝐺)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk34 39781 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ 𝑧 = (𝑏(𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))𝐺))) = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏)))))))
13 cdlemk4.x . . . 4 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
14 cdlemk4.y . . . . . . . . . 10 π‘Œ = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
15 cdlemk4.z . . . . . . . . . . . 12 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
1615oveq1i 7419 . . . . . . . . . . 11 (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))) = (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏)))
1716oveq2i 7420 . . . . . . . . . 10 ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏)))) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
1814, 17eqtri 2761 . . . . . . . . 9 π‘Œ = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
1918eqeq2i 2746 . . . . . . . 8 ((π‘§β€˜π‘ƒ) = π‘Œ ↔ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏)))))
2019imbi2i 336 . . . . . . 7 (((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ) ↔ ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))))
2120ralbii 3094 . . . . . 6 (βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ) ↔ βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))))
2221a1i 11 . . . . 5 (𝑧 ∈ 𝑇 β†’ (βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ) ↔ βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏)))))))
2322riotabiia 7386 . . . 4 (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ)) = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))))
2413, 23eqtri 2761 . . 3 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))))
2512, 24eqtr4di 2791 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ 𝑧 = (𝑏(𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))𝐺))) = 𝑋)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk29-3 39782 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ 𝑧 = (𝑏(𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))𝐺))) ∈ 𝑇)
2725, 26eqeltrrd 2835 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ 𝑋 ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062   class class class wbr 5149   ↦ cmpt 5232   I cid 5574  β—‘ccnv 5676   β†Ύ cres 5679   ∘ ccom 5681  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409   ∈ cmpo 7411  Basecbs 17144  lecple 17204  joincjn 18264  meetcmee 18265  Atomscatm 38133  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  trLctrl 39029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-undef 8258  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030
This theorem is referenced by:  cdlemk36  39784  cdlemk39  39787  cdlemk35s  39808
  Copyright terms: Public domain W3C validator