Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35 Structured version   Visualization version   GIF version

Theorem cdlemk35 40818
Description: Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 40817 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b 𝐵 = (Base‘𝐾)
cdlemk4.l = (le‘𝐾)
cdlemk4.j = (join‘𝐾)
cdlemk4.m = (meet‘𝐾)
cdlemk4.a 𝐴 = (Atoms‘𝐾)
cdlemk4.h 𝐻 = (LHyp‘𝐾)
cdlemk4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk4.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk4.y 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
cdlemk4.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk35 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
Distinct variable groups:   𝑧,𝑏,   ,𝑏,𝑧   ,𝑏,𝑧   𝐴,𝑏,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏,𝑧   𝐾,𝑏,𝑧   𝑁,𝑏,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑏)   𝑌(𝑧,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk35
Dummy variables 𝑑 𝑒 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemk4.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemk4.l . . . 4 = (le‘𝐾)
3 cdlemk4.j . . . 4 = (join‘𝐾)
4 cdlemk4.m . . . 4 = (meet‘𝐾)
5 cdlemk4.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdlemk4.h . . . 4 𝐻 = (LHyp‘𝐾)
7 cdlemk4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk4.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
9 eqid 2734 . . . 4 (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))))) = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 eqid 2734 . . . 4 (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))))) = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
11 eqid 2734 . . . 4 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk34 40816 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
13 cdlemk4.x . . . 4 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
14 cdlemk4.y . . . . . . . . . 10 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
15 cdlemk4.z . . . . . . . . . . . 12 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
1615oveq1i 7455 . . . . . . . . . . 11 (𝑍 (𝑅‘(𝐺𝑏))) = (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))
1716oveq2i 7456 . . . . . . . . . 10 ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))
1814, 17eqtri 2762 . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))
1918eqeq2i 2747 . . . . . . . 8 ((𝑧𝑃) = 𝑌 ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))
2019imbi2i 336 . . . . . . 7 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2120ralbii 3095 . . . . . 6 (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2221a1i 11 . . . . 5 (𝑧𝑇 → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
2322riotabiia 7422 . . . 4 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2413, 23eqtri 2762 . . 3 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2512, 24eqtr4di 2792 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = 𝑋)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk29-3 40817 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) ∈ 𝑇)
2725, 26eqeltrrd 2839 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2103  wne 2942  wral 3063   class class class wbr 5169  cmpt 5252   I cid 5596  ccnv 5698  cres 5701  ccom 5703  cfv 6572  crio 7400  (class class class)co 7445  cmpo 7447  Basecbs 17253  lecple 17313  joincjn 18376  meetcmee 18377  Atomscatm 39168  HLchlt 39255  LHypclh 39890  LTrncltrn 40007  trLctrl 40064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-riotaBAD 38858
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1st 8026  df-2nd 8027  df-undef 8310  df-map 8882  df-proset 18360  df-poset 18378  df-plt 18395  df-lub 18411  df-glb 18412  df-join 18413  df-meet 18414  df-p0 18490  df-p1 18491  df-lat 18497  df-clat 18564  df-oposet 39081  df-ol 39083  df-oml 39084  df-covers 39171  df-ats 39172  df-atl 39203  df-cvlat 39227  df-hlat 39256  df-llines 39404  df-lplanes 39405  df-lvols 39406  df-lines 39407  df-psubsp 39409  df-pmap 39410  df-padd 39702  df-lhyp 39894  df-laut 39895  df-ldil 40010  df-ltrn 40011  df-trl 40065
This theorem is referenced by:  cdlemk36  40819  cdlemk39  40822  cdlemk35s  40843
  Copyright terms: Public domain W3C validator