Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > symrelim | Structured version Visualization version GIF version |
Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
Ref | Expression |
---|---|
symrelim | ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rncnv 36363 | . 2 ⊢ ran ◡𝑅 = dom 𝑅 | |
2 | dfsymrel4 36592 | . . . 4 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | |
3 | 2 | simplbi 497 | . . 3 ⊢ ( SymRel 𝑅 → ◡𝑅 = 𝑅) |
4 | 3 | rneqd 5836 | . 2 ⊢ ( SymRel 𝑅 → ran ◡𝑅 = ran 𝑅) |
5 | 1, 4 | eqtr3id 2793 | 1 ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5579 dom cdm 5580 ran crn 5581 Rel wrel 5585 SymRel wsymrel 36272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-symrel 36585 |
This theorem is referenced by: eqvrelim 36641 |
Copyright terms: Public domain | W3C validator |