Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelim Structured version   Visualization version   GIF version

Theorem symrelim 36834
Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
symrelim ( SymRel 𝑅 → dom 𝑅 = ran 𝑅)

Proof of Theorem symrelim
StepHypRef Expression
1 rncnv 36574 . 2 ran 𝑅 = dom 𝑅
2 dfsymrel4 36826 . . . 4 ( SymRel 𝑅 ↔ (𝑅 = 𝑅 ∧ Rel 𝑅))
32simplbi 498 . . 3 ( SymRel 𝑅𝑅 = 𝑅)
43rneqd 5879 . 2 ( SymRel 𝑅 → ran 𝑅 = ran 𝑅)
51, 4eqtr3id 2790 1 ( SymRel 𝑅 → dom 𝑅 = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5619  dom cdm 5620  ran crn 5621  Rel wrel 5625   SymRel wsymrel 36458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-symrel 36819
This theorem is referenced by:  eqvrelim  36876
  Copyright terms: Public domain W3C validator