![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > symrelim | Structured version Visualization version GIF version |
Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
Ref | Expression |
---|---|
symrelim | ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rncnv 34566 | . 2 ⊢ ran ◡𝑅 = dom 𝑅 | |
2 | dfsymrel4 34791 | . . . 4 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | |
3 | 2 | simplbi 492 | . . 3 ⊢ ( SymRel 𝑅 → ◡𝑅 = 𝑅) |
4 | 3 | rneqd 5556 | . 2 ⊢ ( SymRel 𝑅 → ran ◡𝑅 = ran 𝑅) |
5 | 1, 4 | syl5eqr 2847 | 1 ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ◡ccnv 5311 dom cdm 5312 ran crn 5313 Rel wrel 5317 SymRel wsymrel 34481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-symrel 34784 |
This theorem is referenced by: eqvrelim 34837 |
Copyright terms: Public domain | W3C validator |