Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelim Structured version   Visualization version   GIF version

Theorem symrelim 37429
Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
symrelim ( SymRel 𝑅 → dom 𝑅 = ran 𝑅)

Proof of Theorem symrelim
StepHypRef Expression
1 rncnv 37169 . 2 ran 𝑅 = dom 𝑅
2 dfsymrel4 37421 . . . 4 ( SymRel 𝑅 ↔ (𝑅 = 𝑅 ∧ Rel 𝑅))
32simplbi 499 . . 3 ( SymRel 𝑅𝑅 = 𝑅)
43rneqd 5938 . 2 ( SymRel 𝑅 → ran 𝑅 = ran 𝑅)
51, 4eqtr3id 2787 1 ( SymRel 𝑅 → dom 𝑅 = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ccnv 5676  dom cdm 5677  ran crn 5678  Rel wrel 5682   SymRel wsymrel 37055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-symrel 37414
This theorem is referenced by:  eqvrelim  37471
  Copyright terms: Public domain W3C validator