Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm6 Structured version   Visualization version   GIF version

Theorem dfdm6 38282
Description: Alternate definition of domain. (Contributed by Peter Mazsa, 2-Mar-2018.)
Assertion
Ref Expression
dfdm6 dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Distinct variable group:   𝑥,𝑅

Proof of Theorem dfdm6
StepHypRef Expression
1 ecdmn0 8792 . 2 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
21eqabi 2874 1 dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  {cab 2711  wne 2937  c0 4338  dom cdm 5688  [cec 8741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ec 8745
This theorem is referenced by:  dfrn6  38283
  Copyright terms: Public domain W3C validator