Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm6 Structured version   Visualization version   GIF version

Theorem dfdm6 38319
Description: Alternate definition of domain. (Contributed by Peter Mazsa, 2-Mar-2018.)
Assertion
Ref Expression
dfdm6 dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Distinct variable group:   𝑥,𝑅

Proof of Theorem dfdm6
StepHypRef Expression
1 ecdmn0 8768 . 2 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
21eqabi 2870 1 dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2713  wne 2932  c0 4308  dom cdm 5654  [cec 8717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721
This theorem is referenced by:  dfrn6  38320
  Copyright terms: Public domain W3C validator