| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresun | Structured version Visualization version GIF version | ||
| Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| rnresun | ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5967 | . . 3 ⊢ (𝐹 ↾ (𝐴 ∪ 𝐵)) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) | |
| 2 | 1 | rneqi 5904 | . 2 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) |
| 3 | rnun 6121 | . 2 ⊢ ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | |
| 4 | 2, 3 | eqtri 2753 | 1 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ran crn 5642 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: sge0split 46414 |
| Copyright terms: Public domain | W3C validator |