![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresun | Structured version Visualization version GIF version |
Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnresun | ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5748 | . . 3 ⊢ (𝐹 ↾ (𝐴 ∪ 𝐵)) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) | |
2 | 1 | rneqi 5689 | . 2 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) |
3 | rnun 5880 | . 2 ⊢ ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | |
4 | 2, 3 | eqtri 2819 | 1 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∪ cun 3857 ran crn 5444 ↾ cres 5445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-xp 5449 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 |
This theorem is referenced by: sge0split 42233 |
Copyright terms: Public domain | W3C validator |