Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresun | Structured version Visualization version GIF version |
Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnresun | ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5894 | . . 3 ⊢ (𝐹 ↾ (𝐴 ∪ 𝐵)) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) | |
2 | 1 | rneqi 5835 | . 2 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) |
3 | rnun 6038 | . 2 ⊢ ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ran crn 5581 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: sge0split 43837 |
Copyright terms: Public domain | W3C validator |