Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnresun Structured version   Visualization version   GIF version

Theorem rnresun 45174
Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
rnresun ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))

Proof of Theorem rnresun
StepHypRef Expression
1 resundi 5964 . . 3 (𝐹 ↾ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵))
21rneqi 5901 . 2 ran (𝐹 ↾ (𝐴𝐵)) = ran ((𝐹𝐴) ∪ (𝐹𝐵))
3 rnun 6118 . 2 ran ((𝐹𝐴) ∪ (𝐹𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
42, 3eqtri 2752 1 ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  ran crn 5639  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  sge0split  46407
  Copyright terms: Public domain W3C validator