| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresun | Structured version Visualization version GIF version | ||
| Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| rnresun | ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5980 | . . 3 ⊢ (𝐹 ↾ (𝐴 ∪ 𝐵)) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) | |
| 2 | 1 | rneqi 5917 | . 2 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) |
| 3 | rnun 6134 | . 2 ⊢ ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | |
| 4 | 2, 3 | eqtri 2758 | 1 ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 ran crn 5655 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 |
| This theorem is referenced by: sge0split 46438 |
| Copyright terms: Public domain | W3C validator |