MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5967
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5711 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4183 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4250 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2753 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5653 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5653 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5653 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4132 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2763 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cun 3915  cin 3916   × cxp 5639  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-un 3922  df-in 3924  df-opab 5173  df-xp 5647  df-res 5653
This theorem is referenced by:  reldisjun  6006  imaundi  6125  imadifssran  6127  relresfld  6252  resasplit  6733  fresaunres2  6735  residpr  7118  fnsnsplit  7161  eqfunresadj  7338  tfrlem16  8364  mapunen  9116  fnfi  9148  fseq1p1m1  13566  resunimafz0  14417  gsum2dlem2  19908  dprd2da  19981  evlseu  21997  ptuncnv  23701  mbfres2  25553  nosupbnd2lem1  27634  noinfbnd2lem1  27649  ffsrn  32659  resf1o  32660  symgcom  33047  tocyc01  33082  cvmliftlem10  35288  poimirlem9  37630  disjresundif  38238  dvun  42354  eldioph4b  42806  pwssplit4  43085  tfsconcatrev  43344  undmrnresiss  43600  relexp0a  43712  rnresun  45181  tposresg  48870
  Copyright terms: Public domain W3C validator