MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5944
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5689 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4168 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4235 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2752 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5631 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5631 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5631 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4117 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2762 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3436  cun 3901  cin 3902   × cxp 5617  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-un 3908  df-in 3910  df-opab 5155  df-xp 5625  df-res 5631
This theorem is referenced by:  reldisjun  5983  imaundi  6098  imadifssran  6100  relresfld  6224  resasplit  6694  fresaunres2  6696  residpr  7077  fnsnsplit  7120  eqfunresadj  7297  tfrlem16  8315  mapunen  9063  fnfi  9092  fseq1p1m1  13501  resunimafz0  14352  gsum2dlem2  19850  dprd2da  19923  evlseu  21988  ptuncnv  23692  mbfres2  25544  nosupbnd2lem1  27625  noinfbnd2lem1  27640  ffsrn  32673  resf1o  32674  symgcom  33026  tocyc01  33061  cvmliftlem10  35277  poimirlem9  37619  disjresundif  38227  dvun  42342  eldioph4b  42794  pwssplit4  43072  tfsconcatrev  43331  undmrnresiss  43587  relexp0a  43699  rnresun  45168  tposresg  48872
  Copyright terms: Public domain W3C validator