MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5941
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5684 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4164 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4231 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2754 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5626 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5626 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5626 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4113 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2764 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cun 3895  cin 3896   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  reldisjun  5980  imaundi  6096  imadifssran  6098  relresfld  6223  resasplit  6693  fresaunres2  6695  residpr  7076  fnsnsplit  7118  eqfunresadj  7294  tfrlem16  8312  mapunen  9059  fnfi  9087  fseq1p1m1  13498  resunimafz0  14352  gsum2dlem2  19883  dprd2da  19956  evlseu  22018  ptuncnv  23722  mbfres2  25573  nosupbnd2lem1  27654  noinfbnd2lem1  27669  ffsrn  32711  resf1o  32713  symgcom  33052  tocyc01  33087  cvmliftlem10  35338  poimirlem9  37679  disjresundif  38291  dvun  42462  eldioph4b  42914  pwssplit4  43192  tfsconcatrev  43451  undmrnresiss  43707  relexp0a  43819  rnresun  45287  tposresg  48988
  Copyright terms: Public domain W3C validator