| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 5684 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
| 2 | 1 | ineq2i 4164 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
| 3 | indi 4231 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2754 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 5626 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
| 6 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | uneq12i 4113 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2764 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: reldisjun 5980 imaundi 6096 imadifssran 6098 relresfld 6223 resasplit 6693 fresaunres2 6695 residpr 7076 fnsnsplit 7118 eqfunresadj 7294 tfrlem16 8312 mapunen 9059 fnfi 9087 fseq1p1m1 13498 resunimafz0 14352 gsum2dlem2 19883 dprd2da 19956 evlseu 22018 ptuncnv 23722 mbfres2 25573 nosupbnd2lem1 27654 noinfbnd2lem1 27669 ffsrn 32711 resf1o 32713 symgcom 33052 tocyc01 33087 cvmliftlem10 35338 poimirlem9 37679 disjresundif 38291 dvun 42462 eldioph4b 42914 pwssplit4 43192 tfsconcatrev 43451 undmrnresiss 43707 relexp0a 43819 rnresun 45287 tposresg 48988 |
| Copyright terms: Public domain | W3C validator |