Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5618 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
2 | 1 | ineq2i 4124 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
3 | indi 4188 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
4 | 2, 3 | eqtri 2765 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
5 | df-res 5563 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
6 | df-res 5563 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
7 | df-res 5563 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
8 | 6, 7 | uneq12i 4075 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
9 | 4, 5, 8 | 3eqtr4i 2775 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Vcvv 3408 ∪ cun 3864 ∩ cin 3865 × cxp 5549 ↾ cres 5553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-un 3871 df-in 3873 df-opab 5116 df-xp 5557 df-res 5563 |
This theorem is referenced by: imaundi 6013 relresfld 6139 resasplit 6589 fresaunres2 6591 residpr 6958 fnsnsplit 6999 tfrlem16 8129 mapunen 8815 fnfi 8858 fseq1p1m1 13186 resunimafz0 14009 gsum2dlem2 19356 dprd2da 19429 evlseu 21043 ptuncnv 22704 mbfres2 24542 reldisjun 30661 ffsrn 30784 resf1o 30785 symgcom 31071 tocyc01 31104 cvmliftlem10 32969 eqfunresadj 33454 nosupbnd2lem1 33655 noinfbnd2lem1 33670 poimirlem9 35523 eldioph4b 40336 pwssplit4 40617 undmrnresiss 40888 relexp0a 41001 rnresun 42389 |
Copyright terms: Public domain | W3C validator |