| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 5708 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
| 2 | 1 | ineq2i 4180 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
| 3 | indi 4247 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2752 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 5650 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
| 6 | df-res 5650 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5650 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | uneq12i 4129 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2762 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: reldisjun 6003 imaundi 6122 imadifssran 6124 relresfld 6249 resasplit 6730 fresaunres2 6732 residpr 7115 fnsnsplit 7158 eqfunresadj 7335 tfrlem16 8361 mapunen 9110 fnfi 9142 fseq1p1m1 13559 resunimafz0 14410 gsum2dlem2 19901 dprd2da 19974 evlseu 21990 ptuncnv 23694 mbfres2 25546 nosupbnd2lem1 27627 noinfbnd2lem1 27642 ffsrn 32652 resf1o 32653 symgcom 33040 tocyc01 33075 cvmliftlem10 35281 poimirlem9 37623 disjresundif 38231 dvun 42347 eldioph4b 42799 pwssplit4 43078 tfsconcatrev 43337 undmrnresiss 43593 relexp0a 43705 rnresun 45174 tposresg 48866 |
| Copyright terms: Public domain | W3C validator |