| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 5711 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
| 2 | 1 | ineq2i 4183 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
| 3 | indi 4250 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 5653 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
| 6 | df-res 5653 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5653 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | uneq12i 4132 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∪ cun 3915 ∩ cin 3916 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: reldisjun 6006 imaundi 6125 imadifssran 6127 relresfld 6252 resasplit 6733 fresaunres2 6735 residpr 7118 fnsnsplit 7161 eqfunresadj 7338 tfrlem16 8364 mapunen 9116 fnfi 9148 fseq1p1m1 13566 resunimafz0 14417 gsum2dlem2 19908 dprd2da 19981 evlseu 21997 ptuncnv 23701 mbfres2 25553 nosupbnd2lem1 27634 noinfbnd2lem1 27649 ffsrn 32659 resf1o 32660 symgcom 33047 tocyc01 33082 cvmliftlem10 35288 poimirlem9 37630 disjresundif 38238 dvun 42354 eldioph4b 42806 pwssplit4 43085 tfsconcatrev 43344 undmrnresiss 43600 relexp0a 43712 rnresun 45181 tposresg 48870 |
| Copyright terms: Public domain | W3C validator |