MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 6010
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5754 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4216 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4283 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2764 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5696 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5696 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5696 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4165 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2774 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3479  cun 3948  cin 3949   × cxp 5682  cres 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-un 3955  df-in 3957  df-opab 5205  df-xp 5690  df-res 5696
This theorem is referenced by:  reldisjun  6049  imaundi  6168  imadifssran  6170  relresfld  6295  resasplit  6777  fresaunres2  6779  residpr  7162  fnsnsplit  7205  eqfunresadj  7381  tfrlem16  8434  mapunen  9187  fnfi  9219  fseq1p1m1  13639  resunimafz0  14485  gsum2dlem2  19990  dprd2da  20063  evlseu  22108  ptuncnv  23816  mbfres2  25681  nosupbnd2lem1  27761  noinfbnd2lem1  27776  ffsrn  32741  resf1o  32742  symgcom  33104  tocyc01  33139  cvmliftlem10  35300  poimirlem9  37637  disjresundif  38245  dvun  42394  eldioph4b  42827  pwssplit4  43106  tfsconcatrev  43366  undmrnresiss  43622  relexp0a  43734  rnresun  45190  tposresg  48784
  Copyright terms: Public domain W3C validator