|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) | 
| Ref | Expression | 
|---|---|
| resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpundir 5754 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
| 2 | 1 | ineq2i 4216 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) | 
| 3 | indi 4283 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2764 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | 
| 5 | df-res 5696 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
| 6 | df-res 5696 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5696 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | uneq12i 4165 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | 
| 9 | 4, 5, 8 | 3eqtr4i 2774 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 Vcvv 3479 ∪ cun 3948 ∩ cin 3949 × cxp 5682 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-un 3955 df-in 3957 df-opab 5205 df-xp 5690 df-res 5696 | 
| This theorem is referenced by: reldisjun 6049 imaundi 6168 imadifssran 6170 relresfld 6295 resasplit 6777 fresaunres2 6779 residpr 7162 fnsnsplit 7205 eqfunresadj 7381 tfrlem16 8434 mapunen 9187 fnfi 9219 fseq1p1m1 13639 resunimafz0 14485 gsum2dlem2 19990 dprd2da 20063 evlseu 22108 ptuncnv 23816 mbfres2 25681 nosupbnd2lem1 27761 noinfbnd2lem1 27776 ffsrn 32741 resf1o 32742 symgcom 33104 tocyc01 33139 cvmliftlem10 35300 poimirlem9 37637 disjresundif 38245 dvun 42394 eldioph4b 42827 pwssplit4 43106 tfsconcatrev 43366 undmrnresiss 43622 relexp0a 43734 rnresun 45190 tposresg 48784 | 
| Copyright terms: Public domain | W3C validator |