MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5905
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5656 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4143 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4207 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2766 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5601 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5601 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5601 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4095 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2776 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cun 3885  cin 3886   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-un 3892  df-in 3894  df-opab 5137  df-xp 5595  df-res 5601
This theorem is referenced by:  imaundi  6053  relresfld  6179  resasplit  6644  fresaunres2  6646  residpr  7015  fnsnsplit  7056  tfrlem16  8224  mapunen  8933  fnfi  8964  fseq1p1m1  13330  resunimafz0  14157  gsum2dlem2  19572  dprd2da  19645  evlseu  21293  ptuncnv  22958  mbfres2  24809  reldisjun  30942  ffsrn  31064  resf1o  31065  symgcom  31352  tocyc01  31385  cvmliftlem10  33256  eqfunresadj  33735  nosupbnd2lem1  33918  noinfbnd2lem1  33933  poimirlem9  35786  eldioph4b  40633  pwssplit4  40914  undmrnresiss  41212  relexp0a  41324  rnresun  42716
  Copyright terms: Public domain W3C validator