MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5953
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5701 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4176 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4243 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2752 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5643 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5643 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5643 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4125 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2762 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cun 3909  cin 3910   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-un 3916  df-in 3918  df-opab 5165  df-xp 5637  df-res 5643
This theorem is referenced by:  reldisjun  5992  imaundi  6110  imadifssran  6112  relresfld  6237  resasplit  6712  fresaunres2  6714  residpr  7097  fnsnsplit  7140  eqfunresadj  7317  tfrlem16  8338  mapunen  9087  fnfi  9119  fseq1p1m1  13535  resunimafz0  14386  gsum2dlem2  19885  dprd2da  19958  evlseu  22023  ptuncnv  23727  mbfres2  25579  nosupbnd2lem1  27660  noinfbnd2lem1  27675  ffsrn  32702  resf1o  32703  symgcom  33055  tocyc01  33090  cvmliftlem10  35274  poimirlem9  37616  disjresundif  38224  dvun  42340  eldioph4b  42792  pwssplit4  43071  tfsconcatrev  43330  undmrnresiss  43586  relexp0a  43698  rnresun  45167  tposresg  48859
  Copyright terms: Public domain W3C validator