MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5964
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5708 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4180 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4247 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2752 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5650 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5650 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5650 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4129 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2762 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cun 3912  cin 3913   × cxp 5636  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-opab 5170  df-xp 5644  df-res 5650
This theorem is referenced by:  reldisjun  6003  imaundi  6122  imadifssran  6124  relresfld  6249  resasplit  6730  fresaunres2  6732  residpr  7115  fnsnsplit  7158  eqfunresadj  7335  tfrlem16  8361  mapunen  9110  fnfi  9142  fseq1p1m1  13559  resunimafz0  14410  gsum2dlem2  19901  dprd2da  19974  evlseu  21990  ptuncnv  23694  mbfres2  25546  nosupbnd2lem1  27627  noinfbnd2lem1  27642  ffsrn  32652  resf1o  32653  symgcom  33040  tocyc01  33075  cvmliftlem10  35281  poimirlem9  37623  disjresundif  38231  dvun  42347  eldioph4b  42799  pwssplit4  43078  tfsconcatrev  43337  undmrnresiss  43593  relexp0a  43705  rnresun  45174  tposresg  48866
  Copyright terms: Public domain W3C validator