MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5985
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5729 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 4197 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 4264 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2759 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5671 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5671 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5671 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 4146 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2769 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  cun 3929  cin 3930   × cxp 5657  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-un 3936  df-in 3938  df-opab 5187  df-xp 5665  df-res 5671
This theorem is referenced by:  reldisjun  6024  imaundi  6143  imadifssran  6145  relresfld  6270  resasplit  6753  fresaunres2  6755  residpr  7138  fnsnsplit  7181  eqfunresadj  7358  tfrlem16  8412  mapunen  9165  fnfi  9197  fseq1p1m1  13620  resunimafz0  14468  gsum2dlem2  19957  dprd2da  20030  evlseu  22046  ptuncnv  23750  mbfres2  25603  nosupbnd2lem1  27684  noinfbnd2lem1  27699  ffsrn  32711  resf1o  32712  symgcom  33099  tocyc01  33134  cvmliftlem10  35321  poimirlem9  37658  disjresundif  38266  dvun  42369  eldioph4b  42801  pwssplit4  43080  tfsconcatrev  43339  undmrnresiss  43595  relexp0a  43707  rnresun  45171  tposresg  48820
  Copyright terms: Public domain W3C validator