| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version | ||
| Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6086 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
| 2 | 1 | dmeqi 5842 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
| 3 | dmun 5848 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 5 | df-rn 5625 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
| 6 | df-rn 5625 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5625 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | uneq12i 4114 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3898 ◡ccnv 5613 dom cdm 5614 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: imaundi 6093 imaundir 6094 imadifssran 6095 rnpropg 6166 fun 6681 foun 6777 fpr 7082 f1ounsn 7201 sbthlem6 9000 fodomr 9036 fodomfir 9207 brwdom2 9454 ordtval 23097 noextend 27598 noextendseq 27599 axlowdimlem13 28925 ex-rn 30410 padct 32691 ffsrn 32701 locfinref 33844 esumrnmpt2 34071 satfrnmapom 35382 ptrest 37638 rntrclfvOAI 42703 tfsconcatrn 43354 rclexi 43627 rtrclex 43629 rtrclexi 43633 cnvrcl0 43637 rntrcl 43640 dfrtrcl5 43641 dfrcl2 43686 rntrclfv 43744 rnresun 45196 |
| Copyright terms: Public domain | W3C validator |