| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version | ||
| Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6162 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
| 2 | 1 | dmeqi 5915 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
| 3 | dmun 5921 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
| 4 | 2, 3 | eqtri 2765 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 5 | df-rn 5696 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
| 6 | df-rn 5696 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5696 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | uneq12i 4166 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3eqtr4i 2775 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3949 ◡ccnv 5684 dom cdm 5685 ran crn 5686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: imaundi 6169 imaundir 6170 imadifssran 6171 rnpropg 6242 fun 6770 foun 6866 fpr 7174 f1ounsn 7292 sbthlem6 9128 fodomr 9168 fodomfir 9368 brwdom2 9613 ordtval 23197 noextend 27711 noextendseq 27712 axlowdimlem13 28969 ex-rn 30459 padct 32731 ffsrn 32740 locfinref 33840 esumrnmpt2 34069 satfrnmapom 35375 ptrest 37626 rntrclfvOAI 42702 tfsconcatrn 43355 rclexi 43628 rtrclex 43630 rtrclexi 43634 cnvrcl0 43638 rntrcl 43641 dfrtrcl5 43642 dfrcl2 43687 rntrclfv 43745 rnresun 45185 |
| Copyright terms: Public domain | W3C validator |