| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version | ||
| Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6117 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
| 2 | 1 | dmeqi 5870 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
| 3 | dmun 5876 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 5 | df-rn 5651 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
| 6 | df-rn 5651 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5651 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | uneq12i 4131 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3914 ◡ccnv 5639 dom cdm 5640 ran crn 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-cnv 5648 df-dm 5650 df-rn 5651 |
| This theorem is referenced by: imaundi 6124 imaundir 6125 imadifssran 6126 rnpropg 6197 fun 6724 foun 6820 fpr 7128 f1ounsn 7249 sbthlem6 9061 fodomr 9097 fodomfir 9285 brwdom2 9532 ordtval 23082 noextend 27584 noextendseq 27585 axlowdimlem13 28887 ex-rn 30375 padct 32649 ffsrn 32658 locfinref 33837 esumrnmpt2 34064 satfrnmapom 35357 ptrest 37608 rntrclfvOAI 42672 tfsconcatrn 43324 rclexi 43597 rtrclex 43599 rtrclexi 43603 cnvrcl0 43607 rntrcl 43610 dfrtrcl5 43611 dfrcl2 43656 rntrclfv 43714 rnresun 45167 |
| Copyright terms: Public domain | W3C validator |