MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6049
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6046 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5813 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5819 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2766 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5600 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5600 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5600 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4095 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2776 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  ccnv 5588  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  imaundi  6053  imaundir  6054  rnpropg  6125  fun  6636  foun  6734  fpr  7026  sbthlem6  8875  fodomr  8915  brwdom2  9332  ordtval  22340  axlowdimlem13  27322  ex-rn  28804  padct  31054  ffsrn  31064  locfinref  31791  esumrnmpt2  32036  satfrnmapom  33332  noextend  33869  noextendseq  33870  ptrest  35776  rntrclfvOAI  40513  rclexi  41223  rtrclex  41225  rtrclexi  41229  cnvrcl0  41233  rntrcl  41236  dfrtrcl5  41237  dfrcl2  41282  rntrclfv  41340  rnresun  42716
  Copyright terms: Public domain W3C validator