MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6098
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6095 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5851 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5857 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2752 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5634 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5634 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5634 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4119 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2762 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3903  ccnv 5622  dom cdm 5623  ran crn 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  imaundi  6102  imaundir  6103  imadifssran  6104  rnpropg  6175  fun  6690  foun  6786  fpr  7092  f1ounsn  7213  sbthlem6  9016  fodomr  9052  fodomfir  9237  brwdom2  9484  ordtval  23092  noextend  27594  noextendseq  27595  axlowdimlem13  28917  ex-rn  30402  padct  32676  ffsrn  32685  locfinref  33807  esumrnmpt2  34034  satfrnmapom  35342  ptrest  37598  rntrclfvOAI  42664  tfsconcatrn  43315  rclexi  43588  rtrclex  43590  rtrclexi  43594  cnvrcl0  43598  rntrcl  43601  dfrtrcl5  43602  dfrcl2  43647  rntrclfv  43705  rnresun  45158
  Copyright terms: Public domain W3C validator