MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6120
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6117 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5870 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5876 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2753 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5651 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5651 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5651 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4131 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2763 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3914  ccnv 5639  dom cdm 5640  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-cnv 5648  df-dm 5650  df-rn 5651
This theorem is referenced by:  imaundi  6124  imaundir  6125  imadifssran  6126  rnpropg  6197  fun  6724  foun  6820  fpr  7128  f1ounsn  7249  sbthlem6  9061  fodomr  9097  fodomfir  9285  brwdom2  9532  ordtval  23082  noextend  27584  noextendseq  27585  axlowdimlem13  28887  ex-rn  30375  padct  32649  ffsrn  32658  locfinref  33837  esumrnmpt2  34064  satfrnmapom  35357  ptrest  37608  rntrclfvOAI  42672  tfsconcatrn  43324  rclexi  43597  rtrclex  43599  rtrclexi  43603  cnvrcl0  43607  rntrcl  43610  dfrtrcl5  43611  dfrcl2  43656  rntrclfv  43714  rnresun  45167
  Copyright terms: Public domain W3C validator