![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version |
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 6147 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
2 | 1 | dmeqi 5906 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
3 | dmun 5912 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
4 | 2, 3 | eqtri 2753 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
5 | df-rn 5688 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
6 | df-rn 5688 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 5688 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | uneq12i 4159 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3943 ◡ccnv 5676 dom cdm 5677 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: imaundi 6154 imaundir 6155 rnpropg 6226 fun 6757 foun 6854 fpr 7161 sbthlem6 9111 fodomr 9151 brwdom2 9596 ordtval 23123 noextend 27629 noextendseq 27630 axlowdimlem13 28821 ex-rn 30306 padct 32558 ffsrn 32568 locfinref 33512 esumrnmpt2 33757 satfrnmapom 35050 ptrest 37162 rntrclfvOAI 42176 tfsconcatrn 42836 rclexi 43110 rtrclex 43112 rtrclexi 43116 cnvrcl0 43120 rntrcl 43123 dfrtrcl5 43124 dfrcl2 43169 rntrclfv 43227 rnresun 44617 |
Copyright terms: Public domain | W3C validator |