MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6134
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6131 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5884 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5890 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2758 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5665 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5665 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5665 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4141 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2768 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3924  ccnv 5653  dom cdm 5654  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  imaundi  6138  imaundir  6139  imadifssran  6140  rnpropg  6211  fun  6740  foun  6836  fpr  7144  f1ounsn  7265  sbthlem6  9102  fodomr  9142  fodomfir  9340  brwdom2  9587  ordtval  23127  noextend  27630  noextendseq  27631  axlowdimlem13  28933  ex-rn  30421  padct  32697  ffsrn  32706  locfinref  33872  esumrnmpt2  34099  satfrnmapom  35392  ptrest  37643  rntrclfvOAI  42714  tfsconcatrn  43366  rclexi  43639  rtrclex  43641  rtrclexi  43645  cnvrcl0  43649  rntrcl  43652  dfrtrcl5  43653  dfrcl2  43698  rntrclfv  43756  rnresun  45204
  Copyright terms: Public domain W3C validator