MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6165
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6162 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5915 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5921 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2765 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5696 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5696 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5696 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4166 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2775 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3949  ccnv 5684  dom cdm 5685  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  imaundi  6169  imaundir  6170  imadifssran  6171  rnpropg  6242  fun  6770  foun  6866  fpr  7174  f1ounsn  7292  sbthlem6  9128  fodomr  9168  fodomfir  9368  brwdom2  9613  ordtval  23197  noextend  27711  noextendseq  27712  axlowdimlem13  28969  ex-rn  30459  padct  32731  ffsrn  32740  locfinref  33840  esumrnmpt2  34069  satfrnmapom  35375  ptrest  37626  rntrclfvOAI  42702  tfsconcatrn  43355  rclexi  43628  rtrclex  43630  rtrclexi  43634  cnvrcl0  43638  rntrcl  43641  dfrtrcl5  43642  dfrcl2  43687  rntrclfv  43745  rnresun  45185
  Copyright terms: Public domain W3C validator