| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version | ||
| Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6095 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
| 2 | 1 | dmeqi 5849 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
| 3 | dmun 5855 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
| 4 | 2, 3 | eqtri 2754 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 5 | df-rn 5630 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
| 6 | df-rn 5630 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5630 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | uneq12i 4115 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3eqtr4i 2764 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ◡ccnv 5618 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: imaundi 6102 imaundir 6103 imadifssran 6104 rnpropg 6175 fun 6691 foun 6787 fpr 7093 f1ounsn 7212 sbthlem6 9011 fodomr 9047 fodomfir 9218 brwdom2 9465 ordtval 23110 noextend 27611 noextendseq 27612 axlowdimlem13 28939 ex-rn 30427 padct 32708 ffsrn 32718 locfinref 33861 esumrnmpt2 34088 satfrnmapom 35421 ptrest 37665 rntrclfvOAI 42789 tfsconcatrn 43440 rclexi 43713 rtrclex 43715 rtrclexi 43719 cnvrcl0 43723 rntrcl 43726 dfrtrcl5 43727 dfrcl2 43772 rntrclfv 43830 rnresun 45282 |
| Copyright terms: Public domain | W3C validator |