MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6177
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6174 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5929 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5935 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2768 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5711 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5711 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5711 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4189 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2778 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  ccnv 5699  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  imaundi  6181  imaundir  6182  rnpropg  6253  fun  6783  foun  6880  fpr  7188  sbthlem6  9154  fodomr  9194  fodomfir  9396  brwdom2  9642  ordtval  23218  noextend  27729  noextendseq  27730  axlowdimlem13  28987  ex-rn  30472  padct  32733  ffsrn  32743  locfinref  33787  esumrnmpt2  34032  satfrnmapom  35338  ptrest  37579  rntrclfvOAI  42647  tfsconcatrn  43304  rclexi  43577  rtrclex  43579  rtrclexi  43583  cnvrcl0  43587  rntrcl  43590  dfrtrcl5  43591  dfrcl2  43636  rntrclfv  43694  rnresun  45087
  Copyright terms: Public domain W3C validator