![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version |
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 6141 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
2 | 1 | dmeqi 5901 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
3 | dmun 5907 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
4 | 2, 3 | eqtri 2755 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
5 | df-rn 5683 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
6 | df-rn 5683 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 5683 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | uneq12i 4157 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
9 | 4, 5, 8 | 3eqtr4i 2765 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∪ cun 3942 ◡ccnv 5671 dom cdm 5672 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: imaundi 6148 imaundir 6149 rnpropg 6220 fun 6753 foun 6851 fpr 7157 sbthlem6 9104 fodomr 9144 brwdom2 9588 ordtval 23080 noextend 27586 noextendseq 27587 axlowdimlem13 28752 ex-rn 30237 padct 32485 ffsrn 32495 locfinref 33378 esumrnmpt2 33623 satfrnmapom 34916 ptrest 37027 rntrclfvOAI 42033 tfsconcatrn 42694 rclexi 42968 rtrclex 42970 rtrclexi 42974 cnvrcl0 42978 rntrcl 42981 dfrtrcl5 42982 dfrcl2 43027 rntrclfv 43085 rnresun 44476 |
Copyright terms: Public domain | W3C validator |