MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnun Structured version   Visualization version   GIF version

Theorem rnun 6145
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 6142 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 5904 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 5910 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2760 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 5687 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 5687 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 5687 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 4161 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2770 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  ccnv 5675  dom cdm 5676  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  imaundi  6149  imaundir  6150  rnpropg  6221  fun  6753  foun  6851  fpr  7151  sbthlem6  9087  fodomr  9127  brwdom2  9567  ordtval  22692  noextend  27166  noextendseq  27167  axlowdimlem13  28209  ex-rn  29690  padct  31939  ffsrn  31949  locfinref  32816  esumrnmpt2  33061  satfrnmapom  34356  ptrest  36482  rntrclfvOAI  41419  tfsconcatrn  42082  rclexi  42356  rtrclex  42358  rtrclexi  42362  cnvrcl0  42366  rntrcl  42369  dfrtrcl5  42370  dfrcl2  42415  rntrclfv  42473  rnresun  43866
  Copyright terms: Public domain W3C validator