![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis | Structured version Visualization version GIF version |
Description: Well-Ordered Induction Schema. If all elements less than a given set 𝑥 of the well-ordered class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis.1 | ⊢ 𝑅 We 𝐴 |
wfis.2 | ⊢ 𝑅 Se 𝐴 |
wfis.3 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
Ref | Expression |
---|---|
wfis | ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfis.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfis.3 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) | |
4 | 3 | wfisg 6345 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
5 | 1, 2, 4 | mp2an 689 | . 2 ⊢ ∀𝑦 ∈ 𝐴 𝜑 |
6 | 5 | rspec 3239 | 1 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3053 [wsbc 3770 Se wse 5620 We wwe 5621 Predcpred 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |