Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrelatglb0 | Structured version Visualization version GIF version |
Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mreclat.i | ⊢ 𝐼 = (toInc‘𝐶) |
mrelatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
Ref | Expression |
---|---|
mrelatglb0 | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
2 | mreclat.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
3 | 2 | ipobas 17881 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
4 | mrelatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐺 = (glb‘𝐼)) |
6 | 2 | ipopos 17886 | . . 3 ⊢ 𝐼 ∈ Poset |
7 | 6 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
8 | 0ss 4285 | . . 3 ⊢ ∅ ⊆ 𝐶 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∅ ⊆ 𝐶) |
10 | mre1cl 16968 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
11 | ral0 4399 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑋(le‘𝐼)𝑥 | |
12 | 11 | rspec 3120 | . . 3 ⊢ (𝑥 ∈ ∅ → 𝑋(le‘𝐼)𝑥) |
13 | 12 | adantl 485 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ ∅) → 𝑋(le‘𝐼)𝑥) |
14 | mress 16967 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ 𝑋) | |
15 | 10 | adantr 484 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
16 | 2, 1 | ipole 17884 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶) → (𝑦(le‘𝐼)𝑋 ↔ 𝑦 ⊆ 𝑋)) |
17 | 15, 16 | mpd3an3 1463 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶) → (𝑦(le‘𝐼)𝑋 ↔ 𝑦 ⊆ 𝑋)) |
18 | 14, 17 | mpbird 260 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶) → 𝑦(le‘𝐼)𝑋) |
19 | 18 | 3adant3 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ ∅ 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼)𝑋) |
20 | 1, 3, 5, 7, 9, 10, 13, 19 | posglbd 17876 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 ∅c0 4211 class class class wbr 5030 ‘cfv 6339 lecple 16675 Moorecmre 16956 Posetcpo 17666 glbcglb 17669 toInccipo 17877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-tset 16687 df-ple 16688 df-ocomp 16689 df-mre 16960 df-proset 17654 df-poset 17672 df-lub 17700 df-glb 17701 df-odu 17855 df-ipo 17878 |
This theorem is referenced by: mreclatBAD 17913 |
Copyright terms: Public domain | W3C validator |