![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrelatglb0 | Structured version Visualization version GIF version |
Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mreclat.i | β’ πΌ = (toIncβπΆ) |
mrelatglb.g | β’ πΊ = (glbβπΌ) |
Ref | Expression |
---|---|
mrelatglb0 | β’ (πΆ β (Mooreβπ) β (πΊββ ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 β’ (leβπΌ) = (leβπΌ) | |
2 | mreclat.i | . . 3 β’ πΌ = (toIncβπΆ) | |
3 | 2 | ipobas 18488 | . 2 β’ (πΆ β (Mooreβπ) β πΆ = (BaseβπΌ)) |
4 | mrelatglb.g | . . 3 β’ πΊ = (glbβπΌ) | |
5 | 4 | a1i 11 | . 2 β’ (πΆ β (Mooreβπ) β πΊ = (glbβπΌ)) |
6 | 2 | ipopos 18493 | . . 3 β’ πΌ β Poset |
7 | 6 | a1i 11 | . 2 β’ (πΆ β (Mooreβπ) β πΌ β Poset) |
8 | 0ss 4395 | . . 3 β’ β β πΆ | |
9 | 8 | a1i 11 | . 2 β’ (πΆ β (Mooreβπ) β β β πΆ) |
10 | mre1cl 17542 | . 2 β’ (πΆ β (Mooreβπ) β π β πΆ) | |
11 | ral0 4511 | . . . 4 β’ βπ₯ β β π(leβπΌ)π₯ | |
12 | 11 | rspec 3245 | . . 3 β’ (π₯ β β β π(leβπΌ)π₯) |
13 | 12 | adantl 480 | . 2 β’ ((πΆ β (Mooreβπ) β§ π₯ β β ) β π(leβπΌ)π₯) |
14 | mress 17541 | . . . 4 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ) β π¦ β π) | |
15 | 10 | adantr 479 | . . . . 5 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ) β π β πΆ) |
16 | 2, 1 | ipole 18491 | . . . . 5 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ β§ π β πΆ) β (π¦(leβπΌ)π β π¦ β π)) |
17 | 15, 16 | mpd3an3 1460 | . . . 4 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ) β (π¦(leβπΌ)π β π¦ β π)) |
18 | 14, 17 | mpbird 256 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ) β π¦(leβπΌ)π) |
19 | 18 | 3adant3 1130 | . 2 β’ ((πΆ β (Mooreβπ) β§ π¦ β πΆ β§ βπ₯ β β π¦(leβπΌ)π₯) β π¦(leβπΌ)π) |
20 | 1, 3, 5, 7, 9, 10, 13, 19 | posglbdg 18372 | 1 β’ (πΆ β (Mooreβπ) β (πΊββ ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 β wss 3947 β c0 4321 class class class wbr 5147 βcfv 6542 lecple 17208 Moorecmre 17530 Posetcpo 18264 glbcglb 18267 toInccipo 18484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-tset 17220 df-ple 17221 df-ocomp 17222 df-mre 17534 df-odu 18244 df-proset 18252 df-poset 18270 df-lub 18303 df-glb 18304 df-ipo 18485 |
This theorem is referenced by: mreclatBAD 18520 |
Copyright terms: Public domain | W3C validator |