MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltxrnmnf Structured version   Visualization version   GIF version

Theorem reltxrnmnf 13303
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
reltxrnmnf 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem reltxrnmnf
StepHypRef Expression
1 elxr 13076 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
2 reltre 13301 . . . . . 6 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
32rspec 3228 . . . . 5 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
43a1d 25 . . . 4 (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
5 breq1 5110 . . . . . 6 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
6 0red 11177 . . . . . 6 (𝑥 = +∞ → 0 ∈ ℝ)
7 0ltpnf 13082 . . . . . . 7 0 < +∞
8 breq2 5111 . . . . . . 7 (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞))
97, 8mpbiri 258 . . . . . 6 (𝑥 = +∞ → 0 < 𝑥)
105, 6, 9rspcedvdw 3591 . . . . 5 (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1110a1d 25 . . . 4 (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
12 breq2 5111 . . . . 5 (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞))
13 mnfxr 11231 . . . . . 6 -∞ ∈ ℝ*
14 nltmnf 13089 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
1514pm2.21d 121 . . . . . 6 (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
1613, 15ax-mp 5 . . . . 5 (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1712, 16biimtrdi 253 . . . 4 (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
184, 11, 173jaoi 1430 . . 3 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
191, 18sylbi 217 . 2 (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
2019rgen 3046 1 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cr 11067  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  infmremnf  13304
  Copyright terms: Public domain W3C validator