MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltxrnmnf Structured version   Visualization version   GIF version

Theorem reltxrnmnf 13351
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
reltxrnmnf 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem reltxrnmnf
StepHypRef Expression
1 elxr 13126 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
2 reltre 13349 . . . . . 6 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
32rspec 3238 . . . . 5 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
43a1d 25 . . . 4 (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
5 0red 11245 . . . . . 6 (𝑥 = +∞ → 0 ∈ ℝ)
6 breq1 5146 . . . . . . 7 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
76adantl 480 . . . . . 6 ((𝑥 = +∞ ∧ 𝑦 = 0) → (𝑦 < 𝑥 ↔ 0 < 𝑥))
8 0ltpnf 13132 . . . . . . 7 0 < +∞
9 breq2 5147 . . . . . . 7 (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞))
108, 9mpbiri 257 . . . . . 6 (𝑥 = +∞ → 0 < 𝑥)
115, 7, 10rspcedvd 3604 . . . . 5 (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1211a1d 25 . . . 4 (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
13 breq2 5147 . . . . 5 (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞))
14 mnfxr 11299 . . . . . 6 -∞ ∈ ℝ*
15 nltmnf 13139 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
1615pm2.21d 121 . . . . . 6 (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
1714, 16ax-mp 5 . . . . 5 (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1813, 17biimtrdi 252 . . . 4 (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
194, 12, 183jaoi 1424 . . 3 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
201, 19sylbi 216 . 2 (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
2120rgen 3053 1 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3o 1083   = wceq 1533  wcel 2098  wral 3051  wrex 3060   class class class wbr 5143  cr 11135  0cc0 11136  +∞cpnf 11273  -∞cmnf 11274  *cxr 11275   < clt 11276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475
This theorem is referenced by:  infmremnf  13352
  Copyright terms: Public domain W3C validator