MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltxrnmnf Structured version   Visualization version   GIF version

Theorem reltxrnmnf 12549
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
reltxrnmnf 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem reltxrnmnf
StepHypRef Expression
1 elxr 12326 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
2 reltre 12547 . . . . . 6 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
32rspec 3150 . . . . 5 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
43a1d 25 . . . 4 (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
5 0red 10441 . . . . . 6 (𝑥 = +∞ → 0 ∈ ℝ)
6 breq1 4928 . . . . . . 7 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
76adantl 474 . . . . . 6 ((𝑥 = +∞ ∧ 𝑦 = 0) → (𝑦 < 𝑥 ↔ 0 < 𝑥))
8 0ltpnf 12332 . . . . . . 7 0 < +∞
9 breq2 4929 . . . . . . 7 (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞))
108, 9mpbiri 250 . . . . . 6 (𝑥 = +∞ → 0 < 𝑥)
115, 7, 10rspcedvd 3535 . . . . 5 (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1211a1d 25 . . . 4 (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
13 breq2 4929 . . . . 5 (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞))
14 mnfxr 10496 . . . . . 6 -∞ ∈ ℝ*
15 nltmnf 12339 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
1615pm2.21d 119 . . . . . 6 (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
1714, 16ax-mp 5 . . . . 5 (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1813, 17syl6bi 245 . . . 4 (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
194, 12, 183jaoi 1408 . . 3 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
201, 19sylbi 209 . 2 (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
2120rgen 3091 1 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3o 1068   = wceq 1508  wcel 2051  wral 3081  wrex 3082   class class class wbr 4925  cr 10332  0cc0 10333  +∞cpnf 10469  -∞cmnf 10470  *cxr 10471   < clt 10472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671
This theorem is referenced by:  infmremnf  12550
  Copyright terms: Public domain W3C validator