Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reltxrnmnf | Structured version Visualization version GIF version |
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
reltxrnmnf | ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12781 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
2 | reltre 13003 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | |
3 | 2 | rspec 3131 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
4 | 3 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
5 | 0red 10909 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 ∈ ℝ) | |
6 | breq1 5073 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥)) | |
7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝑥 = +∞ ∧ 𝑦 = 0) → (𝑦 < 𝑥 ↔ 0 < 𝑥)) |
8 | 0ltpnf 12787 | . . . . . . 7 ⊢ 0 < +∞ | |
9 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞)) | |
10 | 8, 9 | mpbiri 257 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 < 𝑥) |
11 | 5, 7, 10 | rspcedvd 3555 | . . . . 5 ⊢ (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
12 | 11 | a1d 25 | . . . 4 ⊢ (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
13 | breq2 5074 | . . . . 5 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞)) | |
14 | mnfxr 10963 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
15 | nltmnf 12794 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
16 | 15 | pm2.21d 121 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
17 | 14, 16 | ax-mp 5 | . . . . 5 ⊢ (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
18 | 13, 17 | syl6bi 252 | . . . 4 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
19 | 4, 12, 18 | 3jaoi 1425 | . . 3 ⊢ ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
20 | 1, 19 | sylbi 216 | . 2 ⊢ (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
21 | 20 | rgen 3073 | 1 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ℝcr 10801 0cc0 10802 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: infmremnf 13006 |
Copyright terms: Public domain | W3C validator |