| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reltxrnmnf | Structured version Visualization version GIF version | ||
| Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| reltxrnmnf | ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13083 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
| 2 | reltre 13308 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | |
| 3 | 2 | rspec 3229 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
| 4 | 3 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 5 | breq1 5113 | . . . . . 6 ⊢ (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥)) | |
| 6 | 0red 11184 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 ∈ ℝ) | |
| 7 | 0ltpnf 13089 | . . . . . . 7 ⊢ 0 < +∞ | |
| 8 | breq2 5114 | . . . . . . 7 ⊢ (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞)) | |
| 9 | 7, 8 | mpbiri 258 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 < 𝑥) |
| 10 | 5, 6, 9 | rspcedvdw 3594 | . . . . 5 ⊢ (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
| 11 | 10 | a1d 25 | . . . 4 ⊢ (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 12 | breq2 5114 | . . . . 5 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞)) | |
| 13 | mnfxr 11238 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 14 | nltmnf 13096 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 15 | 14 | pm2.21d 121 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 16 | 13, 15 | ax-mp 5 | . . . . 5 ⊢ (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
| 17 | 12, 16 | biimtrdi 253 | . . . 4 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 18 | 4, 11, 17 | 3jaoi 1430 | . . 3 ⊢ ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
| 20 | 19 | rgen 3047 | 1 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ℝcr 11074 0cc0 11075 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: infmremnf 13311 |
| Copyright terms: Public domain | W3C validator |