![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reltxrnmnf | Structured version Visualization version GIF version |
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
reltxrnmnf | ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 13092 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
2 | reltre 13315 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | |
3 | 2 | rspec 3248 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
4 | 3 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
5 | 0red 11213 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 ∈ ℝ) | |
6 | breq1 5150 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥)) | |
7 | 6 | adantl 483 | . . . . . 6 ⊢ ((𝑥 = +∞ ∧ 𝑦 = 0) → (𝑦 < 𝑥 ↔ 0 < 𝑥)) |
8 | 0ltpnf 13098 | . . . . . . 7 ⊢ 0 < +∞ | |
9 | breq2 5151 | . . . . . . 7 ⊢ (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞)) | |
10 | 8, 9 | mpbiri 258 | . . . . . 6 ⊢ (𝑥 = +∞ → 0 < 𝑥) |
11 | 5, 7, 10 | rspcedvd 3614 | . . . . 5 ⊢ (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
12 | 11 | a1d 25 | . . . 4 ⊢ (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
13 | breq2 5151 | . . . . 5 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞)) | |
14 | mnfxr 11267 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
15 | nltmnf 13105 | . . . . . . 7 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
16 | 15 | pm2.21d 121 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
17 | 14, 16 | ax-mp 5 | . . . . 5 ⊢ (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
18 | 13, 17 | syl6bi 253 | . . . 4 ⊢ (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
19 | 4, 12, 18 | 3jaoi 1428 | . . 3 ⊢ ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
20 | 1, 19 | sylbi 216 | . 2 ⊢ (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)) |
21 | 20 | rgen 3064 | 1 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 class class class wbr 5147 ℝcr 11105 0cc0 11106 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 < clt 11244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: infmremnf 13318 |
Copyright terms: Public domain | W3C validator |