Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indstr | Structured version Visualization version GIF version |
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
Ref | Expression |
---|---|
indstr.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
indstr.2 | ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
Ref | Expression |
---|---|
indstr | ⊢ (𝑥 ∈ ℕ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 402 | . . . . . 6 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
2 | nnre 11910 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
3 | nnre 11910 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | lenlt 10984 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) | |
5 | 2, 3, 4 | syl2an 595 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) |
6 | 5 | imbi2d 340 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))) |
7 | con34b 315 | . . . . . . . . . . 11 ⊢ ((𝑦 < 𝑥 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)) | |
8 | 6, 7 | bitr4di 288 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (𝑦 < 𝑥 → 𝜓))) |
9 | 8 | ralbidva 3119 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓))) |
10 | indstr.2 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
11 | 9, 10 | sylbid 239 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) → 𝜑)) |
12 | 11 | anim2d 611 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (¬ 𝜑 ∧ 𝜑))) |
13 | ancom 460 | . . . . . . 7 ⊢ ((¬ 𝜑 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝜑)) | |
14 | 12, 13 | syl6ib 250 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (𝜑 ∧ ¬ 𝜑))) |
15 | 1, 14 | mtoi 198 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
16 | 15 | nrex 3196 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) |
17 | indstr.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
18 | 17 | notbid 317 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
19 | 18 | nnwos 12584 | . . . 4 ⊢ (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
20 | 16, 19 | mto 196 | . . 3 ⊢ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑 |
21 | dfral2 3164 | . . 3 ⊢ (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑) | |
22 | 20, 21 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ ℕ 𝜑 |
23 | 22 | rspec 3131 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: indstr2 12596 |
Copyright terms: Public domain | W3C validator |