| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indstr | Structured version Visualization version GIF version | ||
| Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
| Ref | Expression |
|---|---|
| indstr.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| indstr.2 | ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| indstr | ⊢ (𝑥 ∈ ℕ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.24 402 | . . . . . 6 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 2 | nnre 12139 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
| 3 | nnre 12139 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | lenlt 11198 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) | |
| 5 | 2, 3, 4 | syl2an 596 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) |
| 6 | 5 | imbi2d 340 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))) |
| 7 | con34b 316 | . . . . . . . . . . 11 ⊢ ((𝑦 < 𝑥 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)) | |
| 8 | 6, 7 | bitr4di 289 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (𝑦 < 𝑥 → 𝜓))) |
| 9 | 8 | ralbidva 3154 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓))) |
| 10 | indstr.2 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
| 11 | 9, 10 | sylbid 240 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) → 𝜑)) |
| 12 | 11 | anim2d 612 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (¬ 𝜑 ∧ 𝜑))) |
| 13 | ancom 460 | . . . . . . 7 ⊢ ((¬ 𝜑 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝜑)) | |
| 14 | 12, 13 | imbitrdi 251 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (𝜑 ∧ ¬ 𝜑))) |
| 15 | 1, 14 | mtoi 199 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
| 16 | 15 | nrex 3061 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) |
| 17 | indstr.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 19 | 18 | nnwos 12815 | . . . 4 ⊢ (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
| 20 | 16, 19 | mto 197 | . . 3 ⊢ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑 |
| 21 | dfral2 3084 | . . 3 ⊢ (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑) | |
| 22 | 20, 21 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ ℕ 𝜑 |
| 23 | 22 | rspec 3224 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ℝcr 11012 < clt 11153 ≤ cle 11154 ℕcn 12132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 |
| This theorem is referenced by: indstr2 12827 indstrd 42306 unitscyglem3 42310 |
| Copyright terms: Public domain | W3C validator |