MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr Structured version   Visualization version   GIF version

Theorem indstr 12849
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1 (𝑥 = 𝑦 → (𝜑𝜓))
indstr.2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem indstr
StepHypRef Expression
1 pm3.24 404 . . . . . 6 ¬ (𝜑 ∧ ¬ 𝜑)
2 nnre 12168 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
3 nnre 12168 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 lenlt 11241 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
52, 3, 4syl2an 597 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
65imbi2d 341 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)))
7 con34b 316 . . . . . . . . . . 11 ((𝑦 < 𝑥𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))
86, 7bitr4di 289 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (𝑦 < 𝑥𝜓)))
98ralbidva 3169 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓)))
10 indstr.2 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
119, 10sylbid 239 . . . . . . . 8 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) → 𝜑))
1211anim2d 613 . . . . . . 7 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (¬ 𝜑𝜑)))
13 ancom 462 . . . . . . 7 ((¬ 𝜑𝜑) ↔ (𝜑 ∧ ¬ 𝜑))
1412, 13syl6ib 251 . . . . . 6 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (𝜑 ∧ ¬ 𝜑)))
151, 14mtoi 198 . . . . 5 (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
1615nrex 3074 . . . 4 ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦))
17 indstr.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1817notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
1918nnwos 12848 . . . 4 (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
2016, 19mto 196 . . 3 ¬ ∃𝑥 ∈ ℕ ¬ 𝜑
21 dfral2 3099 . . 3 (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑)
2220, 21mpbir 230 . 2 𝑥 ∈ ℕ 𝜑
2322rspec 3232 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wral 3061  wrex 3070   class class class wbr 5109  cr 11058   < clt 11197  cle 11198  cn 12161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772
This theorem is referenced by:  indstr2  12860
  Copyright terms: Public domain W3C validator