MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr Structured version   Visualization version   GIF version

Theorem indstr 11962
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1 (𝑥 = 𝑦 → (𝜑𝜓))
indstr.2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem indstr
StepHypRef Expression
1 pm3.24 391 . . . . . 6 ¬ (𝜑 ∧ ¬ 𝜑)
2 nnre 11286 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
3 nnre 11286 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 lenlt 10374 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
52, 3, 4syl2an 589 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
65imbi2d 331 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)))
7 con34b 307 . . . . . . . . . . 11 ((𝑦 < 𝑥𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))
86, 7syl6bbr 280 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (𝑦 < 𝑥𝜓)))
98ralbidva 3132 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓)))
10 indstr.2 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
119, 10sylbid 231 . . . . . . . 8 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) → 𝜑))
1211anim2d 605 . . . . . . 7 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (¬ 𝜑𝜑)))
13 ancom 452 . . . . . . 7 ((¬ 𝜑𝜑) ↔ (𝜑 ∧ ¬ 𝜑))
1412, 13syl6ib 242 . . . . . 6 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (𝜑 ∧ ¬ 𝜑)))
151, 14mtoi 190 . . . . 5 (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
1615nrex 3146 . . . 4 ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦))
17 indstr.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1817notbid 309 . . . . 5 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
1918nnwos 11961 . . . 4 (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
2016, 19mto 188 . . 3 ¬ ∃𝑥 ∈ ℕ ¬ 𝜑
21 dfral2 3140 . . 3 (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑)
2220, 21mpbir 222 . 2 𝑥 ∈ ℕ 𝜑
2322rspec 3078 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wcel 2155  wral 3055  wrex 3056   class class class wbr 4811  cr 10192   < clt 10332  cle 10333  cn 11278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-n0 11543  df-z 11629  df-uz 11892
This theorem is referenced by:  indstr2  11973
  Copyright terms: Public domain W3C validator