Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr Structured version   Visualization version   GIF version

Theorem indstr 12311
 Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1 (𝑥 = 𝑦 → (𝜑𝜓))
indstr.2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem indstr
StepHypRef Expression
1 pm3.24 406 . . . . . 6 ¬ (𝜑 ∧ ¬ 𝜑)
2 nnre 11639 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
3 nnre 11639 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 lenlt 10715 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
52, 3, 4syl2an 598 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
65imbi2d 344 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)))
7 con34b 319 . . . . . . . . . . 11 ((𝑦 < 𝑥𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))
86, 7bitr4di 292 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓𝑥𝑦) ↔ (𝑦 < 𝑥𝜓)))
98ralbidva 3161 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓)))
10 indstr.2 . . . . . . . . 9 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
119, 10sylbid 243 . . . . . . . 8 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦) → 𝜑))
1211anim2d 614 . . . . . . 7 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (¬ 𝜑𝜑)))
13 ancom 464 . . . . . . 7 ((¬ 𝜑𝜑) ↔ (𝜑 ∧ ¬ 𝜑))
1412, 13syl6ib 254 . . . . . 6 (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)) → (𝜑 ∧ ¬ 𝜑)))
151, 14mtoi 202 . . . . 5 (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
1615nrex 3228 . . . 4 ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦))
17 indstr.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1817notbid 321 . . . . 5 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
1918nnwos 12310 . . . 4 (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓𝑥𝑦)))
2016, 19mto 200 . . 3 ¬ ∃𝑥 ∈ ℕ ¬ 𝜑
21 dfral2 3200 . . 3 (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑)
2220, 21mpbir 234 . 2 𝑥 ∈ ℕ 𝜑
2322rspec 3172 1 (𝑥 ∈ ℕ → 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   class class class wbr 5031  ℝcr 10532   < clt 10671   ≤ cle 10672  ℕcn 11632 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239 This theorem is referenced by:  indstr2  12322
 Copyright terms: Public domain W3C validator