Proof of Theorem iccpnfcnv
Step | Hyp | Ref
| Expression |
1 | | iccpnfhmeo.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) |
2 | | 0xr 11022 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
3 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
4 | | 0lepnf 12868 |
. . . . . . 7
⊢ 0 ≤
+∞ |
5 | | ubicc2 13197 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
≤ +∞) → +∞ ∈ (0[,]+∞)) |
6 | 2, 3, 4, 5 | mp3an 1460 |
. . . . . 6
⊢ +∞
∈ (0[,]+∞) |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 1) → +∞ ∈
(0[,]+∞)) |
8 | | icossicc 13168 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
9 | | 1xr 11034 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ* |
10 | | 0le1 11498 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
11 | | snunico 13211 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ((0[,)1) ∪ {1}) = (0[,]1)) |
12 | 2, 9, 10, 11 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ ((0[,)1)
∪ {1}) = (0[,]1) |
13 | 12 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((0[,)1) ∪ {1})
↔ 𝑥 ∈
(0[,]1)) |
14 | | elun 4083 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((0[,)1) ∪ {1})
↔ (𝑥 ∈ (0[,)1)
∨ 𝑥 ∈
{1})) |
15 | 13, 14 | bitr3i 276 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1})) |
16 | | pm2.53 848 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 ∈ {1})) |
17 | 15, 16 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 ∈ (0[,)1) →
𝑥 ∈
{1})) |
18 | | elsni 4578 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {1} → 𝑥 = 1) |
19 | 17, 18 | syl6 35 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 ∈ (0[,)1) →
𝑥 = 1)) |
20 | 19 | con1d 145 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 = 1 → 𝑥 ∈
(0[,)1))) |
21 | 20 | imp 407 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → 𝑥 ∈
(0[,)1)) |
22 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) |
23 | 22 | icopnfcnv 24105 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ ◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))) |
24 | 23 | simpli 484 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) |
25 | | f1of 6716 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞)) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞) |
27 | 22 | fmpt 6984 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(0[,)1)(𝑥 / (1 −
𝑥)) ∈ (0[,)+∞)
↔ (𝑥 ∈ (0[,)1)
↦ (𝑥 / (1 −
𝑥))):(0[,)1)⟶(0[,)+∞)) |
28 | 26, 27 | mpbir 230 |
. . . . . . . 8
⊢
∀𝑥 ∈
(0[,)1)(𝑥 / (1 −
𝑥)) ∈
(0[,)+∞) |
29 | 28 | rspec 3133 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞)) |
30 | 21, 29 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞)) |
31 | 8, 30 | sselid 3919 |
. . . . 5
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,]+∞)) |
32 | 7, 31 | ifclda 4494 |
. . . 4
⊢ (𝑥 ∈ (0[,]1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ (0[,]+∞)) |
33 | 32 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (0[,]1)) → if(𝑥
= 1, +∞, (𝑥 / (1
− 𝑥))) ∈
(0[,]+∞)) |
34 | | 1elunit 13202 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
35 | 34 | a1i 11 |
. . . . 5
⊢ ((𝑦 ∈ (0[,]+∞) ∧
𝑦 = +∞) → 1
∈ (0[,]1)) |
36 | | icossicc 13168 |
. . . . . 6
⊢ (0[,)1)
⊆ (0[,]1) |
37 | | snunico 13211 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
≤ +∞) → ((0[,)+∞) ∪ {+∞}) =
(0[,]+∞)) |
38 | 2, 3, 4, 37 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢
((0[,)+∞) ∪ {+∞}) = (0[,]+∞) |
39 | 38 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0[,)+∞) ∪
{+∞}) ↔ 𝑦 ∈
(0[,]+∞)) |
40 | | elun 4083 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0[,)+∞) ∪
{+∞}) ↔ (𝑦
∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞})) |
41 | 39, 40 | bitr3i 276 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,]+∞) ↔
(𝑦 ∈ (0[,)+∞)
∨ 𝑦 ∈
{+∞})) |
42 | | pm2.53 848 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (0[,)+∞) ∨
𝑦 ∈ {+∞}) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦
∈ {+∞})) |
43 | 41, 42 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦
∈ {+∞})) |
44 | | elsni 4578 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {+∞} → 𝑦 = +∞) |
45 | 43, 44 | syl6 35 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 ∈
(0[,)+∞) → 𝑦 =
+∞)) |
46 | 45 | con1d 145 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]+∞) →
(¬ 𝑦 = +∞ →
𝑦 ∈
(0[,)+∞))) |
47 | 46 | imp 407 |
. . . . . . 7
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
𝑦 ∈
(0[,)+∞)) |
48 | | f1ocnv 6728 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → ◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1)) |
49 | | f1of 6716 |
. . . . . . . . . 10
⊢ (◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1) → ◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1)) |
50 | 24, 48, 49 | mp2b 10 |
. . . . . . . . 9
⊢ ◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1) |
51 | 23 | simpri 486 |
. . . . . . . . . 10
⊢ ◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))) |
52 | 51 | fmpt 6984 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(0[,)+∞)(𝑦 / (1 +
𝑦)) ∈ (0[,)1) ↔
◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1)) |
53 | 50, 52 | mpbir 230 |
. . . . . . . 8
⊢
∀𝑦 ∈
(0[,)+∞)(𝑦 / (1 +
𝑦)) ∈
(0[,)1) |
54 | 53 | rspec 3133 |
. . . . . . 7
⊢ (𝑦 ∈ (0[,)+∞) →
(𝑦 / (1 + 𝑦)) ∈
(0[,)1)) |
55 | 47, 54 | syl 17 |
. . . . . 6
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(𝑦 / (1 + 𝑦)) ∈
(0[,)1)) |
56 | 36, 55 | sselid 3919 |
. . . . 5
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(𝑦 / (1 + 𝑦)) ∈
(0[,]1)) |
57 | 35, 56 | ifclda 4494 |
. . . 4
⊢ (𝑦 ∈ (0[,]+∞) →
if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1)) |
58 | 57 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ (0[,]+∞)) → if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1)) |
59 | | eqeq2 2750 |
. . . . . 6
⊢ (1 =
if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = 1 ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))) |
60 | 59 | bibi1d 344 |
. . . . 5
⊢ (1 =
if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))) |
61 | | eqeq2 2750 |
. . . . . 6
⊢ ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))) |
62 | 61 | bibi1d 344 |
. . . . 5
⊢ ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))) |
63 | | simpr 485 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → 𝑦 = +∞) |
64 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = +∞) |
65 | 64 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ↔ 𝑦 = +∞)) |
66 | 63, 65 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑥 = 1 → 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
67 | | pnfnre 11016 |
. . . . . . . . 9
⊢ +∞
∉ ℝ |
68 | | neleq1 3054 |
. . . . . . . . . 10
⊢ (𝑦 = +∞ → (𝑦 ∉ ℝ ↔ +∞
∉ ℝ)) |
69 | 68 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 ∉ ℝ ↔ +∞
∉ ℝ)) |
70 | 67, 69 | mpbiri 257 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → 𝑦 ∉
ℝ) |
71 | | neleq1 3054 |
. . . . . . . 8
⊢ (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 ∉ ℝ ↔ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ)) |
72 | 70, 71 | syl5ibcom 244 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ)) |
73 | | df-nel 3050 |
. . . . . . . 8
⊢ (if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ ↔ ¬ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ) |
74 | | iffalse 4468 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
75 | 74 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
76 | | rge0ssre 13188 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
77 | 76, 30 | sselid 3919 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ ℝ) |
78 | 75, 77 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ) |
79 | 78 | ex 413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]1) → (¬
𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)) |
80 | 79 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (¬
𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)) |
81 | 80 | con1d 145 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (¬
if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ → 𝑥 = 1)) |
82 | 73, 81 | syl5bi 241 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) →
(if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ → 𝑥 = 1)) |
83 | 72, 82 | syld 47 |
. . . . . 6
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → 𝑥 = 1)) |
84 | 66, 83 | impbid 211 |
. . . . 5
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
𝑦 = +∞) → (𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
85 | | eqeq2 2750 |
. . . . . . 7
⊢ (+∞
= if(𝑥 = 1, +∞,
(𝑥 / (1 − 𝑥))) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
86 | 85 | bibi2d 343 |
. . . . . 6
⊢ (+∞
= if(𝑥 = 1, +∞,
(𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))) |
87 | | eqeq2 2750 |
. . . . . . 7
⊢ ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 = (𝑥 / (1 − 𝑥)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
88 | 87 | bibi2d 343 |
. . . . . 6
⊢ ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))) |
89 | | 0re 10977 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
90 | | elico2 13143 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))) |
91 | 89, 9, 90 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)) |
92 | 55, 91 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤
(𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)) |
93 | 92 | simp1d 1141 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(𝑦 / (1 + 𝑦)) ∈
ℝ) |
94 | 92 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
(𝑦 / (1 + 𝑦)) < 1) |
95 | 93, 94 | gtned 11110 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞) →
1 ≠ (𝑦 / (1 + 𝑦))) |
96 | 95 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
1 ≠ (𝑦 / (1 + 𝑦))) |
97 | 96 | neneqd 2948 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
¬ 1 = (𝑦 / (1 + 𝑦))) |
98 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 1 = (𝑦 / (1 + 𝑦)))) |
99 | 98 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (¬ 𝑥 = (𝑦 / (1 + 𝑦)) ↔ ¬ 1 = (𝑦 / (1 + 𝑦)))) |
100 | 97, 99 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
(𝑥 = 1 → ¬ 𝑥 = (𝑦 / (1 + 𝑦)))) |
101 | 100 | imp 407 |
. . . . . . 7
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 1) → ¬ 𝑥 = (𝑦 / (1 + 𝑦))) |
102 | | simplr 766 |
. . . . . . 7
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 1) → ¬ 𝑦 = +∞) |
103 | 101, 102 | 2falsed 377 |
. . . . . 6
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞)) |
104 | | f1ocnvfvb 7151 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ (◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥)) |
105 | 24, 104 | mp3an1 1447 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(((𝑥 ∈ (0[,)1) ↦
(𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ (◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥)) |
106 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
𝑥 ∈
(0[,)1)) |
107 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (𝑥 / (1 − 𝑥)) ∈ V |
108 | 22 | fvmpt2 6886 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)1) ∧ (𝑥 / (1 − 𝑥)) ∈ V) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥))) |
109 | 106, 107,
108 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑥 ∈ (0[,)1) ↦
(𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥))) |
110 | 109 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(((𝑥 ∈ (0[,)1) ↦
(𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ (𝑥 / (1 − 𝑥)) = 𝑦)) |
111 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
𝑦 ∈
(0[,)+∞)) |
112 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (𝑦 / (1 + 𝑦)) ∈ V |
113 | 51 | fvmpt2 6886 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0[,)+∞) ∧
(𝑦 / (1 + 𝑦)) ∈ V) → (◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦))) |
114 | 111, 112,
113 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦))) |
115 | 114 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((◡(𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥 ↔ (𝑦 / (1 + 𝑦)) = 𝑥)) |
116 | 105, 110,
115 | 3bitr3rd 310 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦)) |
117 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥) |
118 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦) |
119 | 116, 117,
118 | 3bitr4g 314 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) →
(𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
120 | 21, 47, 119 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 = 1) ∧ (𝑦 ∈ (0[,]+∞) ∧
¬ 𝑦 = +∞)) →
(𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
121 | 120 | an4s 657 |
. . . . . . 7
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
(¬ 𝑥 = 1 ∧ ¬
𝑦 = +∞)) →
(𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
122 | 121 | anass1rs 652 |
. . . . . 6
⊢ ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) ∧
¬ 𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥)))) |
123 | 86, 88, 103, 122 | ifbothda 4497 |
. . . . 5
⊢ (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧
¬ 𝑦 = +∞) →
(𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
124 | 60, 62, 84, 123 | ifbothda 4497 |
. . . 4
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) →
(𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
125 | 124 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ (0[,]1) ∧ 𝑦
∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))) |
126 | 1, 33, 58, 125 | f1ocnv2d 7522 |
. 2
⊢ (⊤
→ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))) |
127 | 126 | mptru 1546 |
1
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))) |