MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfcnv Structured version   Visualization version   GIF version

Theorem iccpnfcnv 23549
Description: Define a bijection from [0, 1] to [0, +∞]. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
Assertion
Ref Expression
iccpnfcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem iccpnfcnv
StepHypRef Expression
1 iccpnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
2 0xr 10677 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 10684 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 12515 . . . . . . 7 0 ≤ +∞
5 ubicc2 12843 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1458 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 1) → +∞ ∈ (0[,]+∞))
8 icossicc 12814 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 1xr 10689 . . . . . . . . . . . . . 14 1 ∈ ℝ*
10 0le1 11152 . . . . . . . . . . . . . 14 0 ≤ 1
11 snunico 12857 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
122, 9, 10, 11mp3an 1458 . . . . . . . . . . . . 13 ((0[,)1) ∪ {1}) = (0[,]1)
1312eleq2i 2881 . . . . . . . . . . . 12 (𝑥 ∈ ((0[,)1) ∪ {1}) ↔ 𝑥 ∈ (0[,]1))
14 elun 4076 . . . . . . . . . . . 12 (𝑥 ∈ ((0[,)1) ∪ {1}) ↔ (𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}))
1513, 14bitr3i 280 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}))
16 pm2.53 848 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 ∈ {1}))
1715, 16sylbi 220 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 ∈ {1}))
18 elsni 4542 . . . . . . . . . 10 (𝑥 ∈ {1} → 𝑥 = 1)
1917, 18syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 = 1))
2019con1d 147 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 1 → 𝑥 ∈ (0[,)1)))
2120imp 410 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → 𝑥 ∈ (0[,)1))
22 eqid 2798 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2322icopnfcnv 23547 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
2423simpli 487 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞)
25 f1of 6590 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞))
2624, 25ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞)
2722fmpt 6851 . . . . . . . . 9 (∀𝑥 ∈ (0[,)1)(𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞))
2826, 27mpbir 234 . . . . . . . 8 𝑥 ∈ (0[,)1)(𝑥 / (1 − 𝑥)) ∈ (0[,)+∞)
2928rspec 3172 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
3021, 29syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
318, 30sseldi 3913 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,]+∞))
327, 31ifclda 4459 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ (0[,]+∞))
3332adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ (0[,]+∞))
34 1elunit 12848 . . . . . 6 1 ∈ (0[,]1)
3534a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 1 ∈ (0[,]1))
36 icossicc 12814 . . . . . 6 (0[,)1) ⊆ (0[,]1)
37 snunico 12857 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
382, 3, 4, 37mp3an 1458 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
3938eleq2i 2881 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
40 elun 4076 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
4139, 40bitr3i 280 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
42 pm2.53 848 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
4341, 42sylbi 220 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
44 elsni 4542 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
4543, 44syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
4645con1d 147 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
4746imp 410 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
48 f1ocnv 6602 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1))
49 f1of 6590 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1))
5024, 48, 49mp2b 10 . . . . . . . . 9 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1)
5123simpri 489 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))
5251fmpt 6851 . . . . . . . . 9 (∀𝑦 ∈ (0[,)+∞)(𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1))
5350, 52mpbir 234 . . . . . . . 8 𝑦 ∈ (0[,)+∞)(𝑦 / (1 + 𝑦)) ∈ (0[,)1)
5453rspec 3172 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
5547, 54syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
5636, 55sseldi 3913 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,]1))
5735, 56ifclda 4459 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1))
5857adantl 485 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1))
59 eqeq2 2810 . . . . . 6 (1 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = 1 ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
6059bibi1d 347 . . . . 5 (1 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
61 eqeq2 2810 . . . . . 6 ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
6261bibi1d 347 . . . . 5 ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
63 simpr 488 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
64 iftrue 4431 . . . . . . . 8 (𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = +∞)
6564eqeq2d 2809 . . . . . . 7 (𝑥 = 1 → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ↔ 𝑦 = +∞))
6663, 65syl5ibrcom 250 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 1 → 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
67 pnfnre 10671 . . . . . . . . 9 +∞ ∉ ℝ
68 neleq1 3096 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ ℝ ↔ +∞ ∉ ℝ))
6968adantl 485 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ ℝ ↔ +∞ ∉ ℝ))
7067, 69mpbiri 261 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ ℝ)
71 neleq1 3096 . . . . . . . 8 (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 ∉ ℝ ↔ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ))
7270, 71syl5ibcom 248 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ))
73 df-nel 3092 . . . . . . . 8 (if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ ↔ ¬ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)
74 iffalse 4434 . . . . . . . . . . . . 13 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
7574adantl 485 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
76 rge0ssre 12834 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
7776, 30sseldi 3913 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
7875, 77eqeltrd 2890 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)
7978ex 416 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ))
8079ad2antrr 725 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ))
8180con1d 147 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ → 𝑥 = 1))
8273, 81syl5bi 245 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ → 𝑥 = 1))
8372, 82syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → 𝑥 = 1))
8466, 83impbid 215 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
85 eqeq2 2810 . . . . . . 7 (+∞ = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
8685bibi2d 346 . . . . . 6 (+∞ = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
87 eqeq2 2810 . . . . . . 7 ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 = (𝑥 / (1 − 𝑥)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
8887bibi2d 346 . . . . . 6 ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
89 0re 10632 . . . . . . . . . . . . . . 15 0 ∈ ℝ
90 elico2 12789 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
9189, 9, 90mp2an 691 . . . . . . . . . . . . . 14 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
9255, 91sylib 221 . . . . . . . . . . . . 13 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
9392simp1d 1139 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
9492simp3d 1141 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) < 1)
9593, 94gtned 10764 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 1 ≠ (𝑦 / (1 + 𝑦)))
9695adantll 713 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 1 ≠ (𝑦 / (1 + 𝑦)))
9796neneqd 2992 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 1 = (𝑦 / (1 + 𝑦)))
98 eqeq1 2802 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 1 = (𝑦 / (1 + 𝑦))))
9998notbid 321 . . . . . . . . 9 (𝑥 = 1 → (¬ 𝑥 = (𝑦 / (1 + 𝑦)) ↔ ¬ 1 = (𝑦 / (1 + 𝑦))))
10097, 99syl5ibrcom 250 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 1 → ¬ 𝑥 = (𝑦 / (1 + 𝑦))))
101100imp 410 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → ¬ 𝑥 = (𝑦 / (1 + 𝑦)))
102 simplr 768 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → ¬ 𝑦 = +∞)
103101, 1022falsed 380 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞))
104 f1ocnvfvb 7014 . . . . . . . . . . . 12 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥))
10524, 104mp3an1 1445 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥))
106 simpl 486 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)1))
107 ovex 7168 . . . . . . . . . . . . 13 (𝑥 / (1 − 𝑥)) ∈ V
10822fvmpt2 6756 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ (𝑥 / (1 − 𝑥)) ∈ V) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥)))
109106, 107, 108sylancl 589 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥)))
110109eqeq1d 2800 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
111 simpr 488 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
112 ovex 7168 . . . . . . . . . . . . 13 (𝑦 / (1 + 𝑦)) ∈ V
11351fvmpt2 6756 . . . . . . . . . . . . 13 ((𝑦 ∈ (0[,)+∞) ∧ (𝑦 / (1 + 𝑦)) ∈ V) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦)))
114111, 112, 113sylancl 589 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦)))
115114eqeq1d 2800 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥 ↔ (𝑦 / (1 + 𝑦)) = 𝑥))
116105, 110, 1153bitr3rd 313 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
117 eqcom 2805 . . . . . . . . . 10 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
118 eqcom 2805 . . . . . . . . . 10 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
119116, 117, 1183bitr4g 317 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
12021, 47, 119syl2an 598 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
121120an4s 659 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 1 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
122121anass1rs 654 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
12386, 88, 103, 122ifbothda 4462 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
12460, 62, 84, 123ifbothda 4462 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
125124adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
1261, 33, 58, 125f1ocnv2d 7378 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))))
127126mptru 1545 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2987  wnel 3091  wral 3106  Vcvv 3441  cun 3879  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  [,)cico 12728  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12378  df-ico 12732  df-icc 12733
This theorem is referenced by:  iccpnfhmeo  23550  xrhmeo  23551
  Copyright terms: Public domain W3C validator