MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfcnv Structured version   Visualization version   GIF version

Theorem iccpnfcnv 23251
Description: Define a bijection from [0, 1] to [0, +∞]. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
Assertion
Ref Expression
iccpnfcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem iccpnfcnv
StepHypRef Expression
1 iccpnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
2 0xr 10487 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 10494 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 12344 . . . . . . 7 0 ≤ +∞
5 ubicc2 12669 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1440 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 1) → +∞ ∈ (0[,]+∞))
8 icossicc 12640 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 1xr 10500 . . . . . . . . . . . . . 14 1 ∈ ℝ*
10 0le1 10964 . . . . . . . . . . . . . 14 0 ≤ 1
11 snunico 12681 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
122, 9, 10, 11mp3an 1440 . . . . . . . . . . . . 13 ((0[,)1) ∪ {1}) = (0[,]1)
1312eleq2i 2857 . . . . . . . . . . . 12 (𝑥 ∈ ((0[,)1) ∪ {1}) ↔ 𝑥 ∈ (0[,]1))
14 elun 4014 . . . . . . . . . . . 12 (𝑥 ∈ ((0[,)1) ∪ {1}) ↔ (𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}))
1513, 14bitr3i 269 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}))
16 pm2.53 837 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∨ 𝑥 ∈ {1}) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 ∈ {1}))
1715, 16sylbi 209 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 ∈ {1}))
18 elsni 4458 . . . . . . . . . 10 (𝑥 ∈ {1} → 𝑥 = 1)
1917, 18syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0[,)1) → 𝑥 = 1))
2019con1d 142 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 1 → 𝑥 ∈ (0[,)1)))
2120imp 398 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → 𝑥 ∈ (0[,)1))
22 eqid 2778 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2322icopnfcnv 23249 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
2423simpli 476 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞)
25 f1of 6444 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞))
2624, 25ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞)
2722fmpt 6697 . . . . . . . . 9 (∀𝑥 ∈ (0[,)1)(𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)⟶(0[,)+∞))
2826, 27mpbir 223 . . . . . . . 8 𝑥 ∈ (0[,)1)(𝑥 / (1 − 𝑥)) ∈ (0[,)+∞)
2928rspec 3157 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
3021, 29syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
318, 30sseldi 3856 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ (0[,]+∞))
327, 31ifclda 4384 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ (0[,]+∞))
3332adantl 474 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ (0[,]+∞))
34 1elunit 12672 . . . . . 6 1 ∈ (0[,]1)
3534a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 1 ∈ (0[,]1))
36 icossicc 12640 . . . . . 6 (0[,)1) ⊆ (0[,]1)
37 snunico 12681 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
382, 3, 4, 37mp3an 1440 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
3938eleq2i 2857 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
40 elun 4014 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
4139, 40bitr3i 269 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
42 pm2.53 837 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
4341, 42sylbi 209 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
44 elsni 4458 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
4543, 44syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
4645con1d 142 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
4746imp 398 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
48 f1ocnv 6456 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1))
49 f1of 6444 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)–1-1-onto→(0[,)1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1))
5024, 48, 49mp2b 10 . . . . . . . . 9 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1)
5123simpri 478 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))
5251fmpt 6697 . . . . . . . . 9 (∀𝑦 ∈ (0[,)+∞)(𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)+∞)⟶(0[,)1))
5350, 52mpbir 223 . . . . . . . 8 𝑦 ∈ (0[,)+∞)(𝑦 / (1 + 𝑦)) ∈ (0[,)1)
5453rspec 3157 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
5547, 54syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
5636, 55sseldi 3856 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,]1))
5735, 56ifclda 4384 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1))
5857adantl 474 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ∈ (0[,]1))
59 eqeq2 2789 . . . . . 6 (1 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = 1 ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
6059bibi1d 336 . . . . 5 (1 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
61 eqeq2 2789 . . . . . 6 ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
6261bibi1d 336 . . . . 5 ((𝑦 / (1 + 𝑦)) = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ↔ (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
63 simpr 477 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
64 iftrue 4356 . . . . . . . 8 (𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = +∞)
6564eqeq2d 2788 . . . . . . 7 (𝑥 = 1 → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ↔ 𝑦 = +∞))
6663, 65syl5ibrcom 239 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 1 → 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
67 pnfnre 10481 . . . . . . . . 9 +∞ ∉ ℝ
68 neleq1 3078 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ ℝ ↔ +∞ ∉ ℝ))
6968adantl 474 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ ℝ ↔ +∞ ∉ ℝ))
7067, 69mpbiri 250 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ ℝ)
71 neleq1 3078 . . . . . . . 8 (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 ∉ ℝ ↔ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ))
7270, 71syl5ibcom 237 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ))
73 df-nel 3074 . . . . . . . 8 (if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ ↔ ¬ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)
74 iffalse 4359 . . . . . . . . . . . . 13 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
7574adantl 474 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
76 rge0ssre 12660 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
7776, 30sseldi 3856 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
7875, 77eqeltrd 2866 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ)
7978ex 405 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ))
8079ad2antrr 713 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ))
8180con1d 142 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∈ ℝ → 𝑥 = 1))
8273, 81syl5bi 234 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) ∉ ℝ → 𝑥 = 1))
8372, 82syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → 𝑥 = 1))
8466, 83impbid 204 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 1 ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
85 eqeq2 2789 . . . . . . 7 (+∞ = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
8685bibi2d 335 . . . . . 6 (+∞ = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
87 eqeq2 2789 . . . . . . 7 ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → (𝑦 = (𝑥 / (1 − 𝑥)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
8887bibi2d 335 . . . . . 6 ((𝑥 / (1 − 𝑥)) = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) → ((𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))) ↔ (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))))
89 0re 10441 . . . . . . . . . . . . . . 15 0 ∈ ℝ
90 elico2 12616 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
9189, 9, 90mp2an 679 . . . . . . . . . . . . . 14 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
9255, 91sylib 210 . . . . . . . . . . . . 13 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
9392simp1d 1122 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
9492simp3d 1124 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (𝑦 / (1 + 𝑦)) < 1)
9593, 94gtned 10575 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 1 ≠ (𝑦 / (1 + 𝑦)))
9695adantll 701 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 1 ≠ (𝑦 / (1 + 𝑦)))
9796neneqd 2972 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 1 = (𝑦 / (1 + 𝑦)))
98 eqeq1 2782 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 1 = (𝑦 / (1 + 𝑦))))
9998notbid 310 . . . . . . . . 9 (𝑥 = 1 → (¬ 𝑥 = (𝑦 / (1 + 𝑦)) ↔ ¬ 1 = (𝑦 / (1 + 𝑦))))
10097, 99syl5ibrcom 239 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 1 → ¬ 𝑥 = (𝑦 / (1 + 𝑦))))
101100imp 398 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → ¬ 𝑥 = (𝑦 / (1 + 𝑦)))
102 simplr 756 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → ¬ 𝑦 = +∞)
103101, 1022falsed 369 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = +∞))
104 f1ocnvfvb 6861 . . . . . . . . . . . 12 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))):(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥))
10524, 104mp3an1 1427 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥))
106 simpl 475 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)1))
107 ovex 7008 . . . . . . . . . . . . 13 (𝑥 / (1 − 𝑥)) ∈ V
10822fvmpt2 6605 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ (𝑥 / (1 − 𝑥)) ∈ V) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥)))
109106, 107, 108sylancl 577 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = (𝑥 / (1 − 𝑥)))
110109eqeq1d 2780 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑥) = 𝑦 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
111 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
112 ovex 7008 . . . . . . . . . . . . 13 (𝑦 / (1 + 𝑦)) ∈ V
11351fvmpt2 6605 . . . . . . . . . . . . 13 ((𝑦 ∈ (0[,)+∞) ∧ (𝑦 / (1 + 𝑦)) ∈ V) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦)))
114111, 112, 113sylancl 577 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = (𝑦 / (1 + 𝑦)))
115114eqeq1d 2780 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑦) = 𝑥 ↔ (𝑦 / (1 + 𝑦)) = 𝑥))
116105, 110, 1153bitr3rd 302 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
117 eqcom 2785 . . . . . . . . . 10 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
118 eqcom 2785 . . . . . . . . . 10 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
119116, 117, 1183bitr4g 306 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
12021, 47, 119syl2an 586 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 1) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
121120an4s 647 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 1 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
122121anass1rs 642 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 1) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
12386, 88, 103, 122ifbothda 4387 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
12460, 62, 84, 123ifbothda 4387 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
125124adantl 474 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))) ↔ 𝑦 = if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))))
1261, 33, 58, 125f1ocnv2d 7216 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))))
127126mptru 1514 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wtru 1508  wcel 2050  wne 2967  wnel 3073  wral 3088  Vcvv 3415  cun 3827  ifcif 4350  {csn 4441   class class class wbr 4929  cmpt 5008  ccnv 5406  wf 6184  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335  1c1 10336   + caddc 10338  +∞cpnf 10471  *cxr 10473   < clt 10474  cle 10475  cmin 10670   / cdiv 11098  [,)cico 12556  [,]cicc 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-rp 12205  df-ico 12560  df-icc 12561
This theorem is referenced by:  iccpnfhmeo  23252  xrhmeo  23253
  Copyright terms: Public domain W3C validator