| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopover | Structured version Visualization version GIF version | ||
| Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| ecopopr.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
| ecopopr.com | ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
| ecopopr.cl | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| ecopopr.ass | ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
| ecopopr.can | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| ecopover | ⊢ ∼ Er (𝑆 × 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
| 2 | 1 | relopabiv 5804 | . 2 ⊢ Rel ∼ |
| 3 | ecopopr.com | . . 3 ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) | |
| 4 | 1, 3 | ecopovsym 8838 | . 2 ⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
| 5 | ecopopr.cl | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 6 | ecopopr.ass | . . 3 ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) | |
| 7 | ecopopr.can | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) | |
| 8 | 1, 3, 5, 6, 7 | ecopovtrn 8839 | . 2 ⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
| 9 | vex 3468 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 10 | vex 3468 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
| 11 | 9, 10, 3 | caovcom 7609 | . . . . . . . 8 ⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
| 12 | 1 | ecopoveq 8837 | . . . . . . . 8 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
| 13 | 11, 12 | mpbiri 258 | . . . . . . 7 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 14 | 13 | anidms 566 | . . . . . 6 ⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 15 | 14 | rgen2 3185 | . . . . 5 ⊢ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
| 16 | breq12 5129 | . . . . . . 7 ⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) | |
| 17 | 16 | anidms 566 | . . . . . 6 ⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
| 18 | 17 | ralxp 5826 | . . . . 5 ⊢ (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 19 | 15, 18 | mpbir 231 | . . . 4 ⊢ ∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 |
| 20 | 19 | rspec 3237 | . . 3 ⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
| 21 | opabssxp 5752 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) | |
| 22 | 1, 21 | eqsstri 4010 | . . . . 5 ⊢ ∼ ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
| 23 | 22 | ssbri 5169 | . . . 4 ⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
| 24 | brxp 5708 | . . . . 5 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) | |
| 25 | 24 | simplbi 497 | . . . 4 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 26 | 23, 25 | syl 17 | . . 3 ⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 27 | 20, 26 | impbii 209 | . 2 ⊢ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓) |
| 28 | 2, 4, 8, 27 | iseri 8751 | 1 ⊢ ∼ Er (𝑆 × 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 〈cop 4612 class class class wbr 5124 {copab 5186 × cxp 5657 (class class class)co 7410 Er wer 8721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fv 6544 df-ov 7413 df-er 8724 |
| This theorem is referenced by: enqer 10940 enrer 11082 |
| Copyright terms: Public domain | W3C validator |