MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopover Structured version   Visualization version   GIF version

Theorem ecopover 8840
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
ecopopr.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopopr.ass ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
ecopopr.can ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopover Er (𝑆 × 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopover
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
21relopabiv 5804 . 2 Rel
3 ecopopr.com . . 3 (𝑥 + 𝑦) = (𝑦 + 𝑥)
41, 3ecopovsym 8838 . 2 (𝑓 𝑔𝑔 𝑓)
5 ecopopr.cl . . 3 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
6 ecopopr.ass . . 3 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
7 ecopopr.can . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
81, 3, 5, 6, 7ecopovtrn 8839 . 2 ((𝑓 𝑔𝑔 ) → 𝑓 )
9 vex 3468 . . . . . . . . 9 𝑔 ∈ V
10 vex 3468 . . . . . . . . 9 ∈ V
119, 10, 3caovcom 7609 . . . . . . . 8 (𝑔 + ) = ( + 𝑔)
121ecopoveq 8837 . . . . . . . 8 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑔, 𝑔, ⟩ ↔ (𝑔 + ) = ( + 𝑔)))
1311, 12mpbiri 258 . . . . . . 7 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → ⟨𝑔, 𝑔, ⟩)
1413anidms 566 . . . . . 6 ((𝑔𝑆𝑆) → ⟨𝑔, 𝑔, ⟩)
1514rgen2 3185 . . . . 5 𝑔𝑆𝑆𝑔, 𝑔,
16 breq12 5129 . . . . . . 7 ((𝑓 = ⟨𝑔, ⟩ ∧ 𝑓 = ⟨𝑔, ⟩) → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
1716anidms 566 . . . . . 6 (𝑓 = ⟨𝑔, ⟩ → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
1817ralxp 5826 . . . . 5 (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓 ↔ ∀𝑔𝑆𝑆𝑔, 𝑔, ⟩)
1915, 18mpbir 231 . . . 4 𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓
2019rspec 3237 . . 3 (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓)
21 opabssxp 5752 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
221, 21eqsstri 4010 . . . . 5 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
2322ssbri 5169 . . . 4 (𝑓 𝑓𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓)
24 brxp 5708 . . . . 5 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)))
2524simplbi 497 . . . 4 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓𝑓 ∈ (𝑆 × 𝑆))
2623, 25syl 17 . . 3 (𝑓 𝑓𝑓 ∈ (𝑆 × 𝑆))
2720, 26impbii 209 . 2 (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 𝑓)
282, 4, 8, 27iseri 8751 1 Er (𝑆 × 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3052  cop 4612   class class class wbr 5124  {copab 5186   × cxp 5657  (class class class)co 7410   Er wer 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fv 6544  df-ov 7413  df-er 8724
This theorem is referenced by:  enqer  10940  enrer  11082
  Copyright terms: Public domain W3C validator