| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopover | Structured version Visualization version GIF version | ||
| Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| ecopopr.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
| ecopopr.com | ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
| ecopopr.cl | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| ecopopr.ass | ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
| ecopopr.can | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| ecopover | ⊢ ∼ Er (𝑆 × 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
| 2 | 1 | relopabiv 5766 | . 2 ⊢ Rel ∼ |
| 3 | ecopopr.com | . . 3 ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) | |
| 4 | 1, 3 | ecopovsym 8751 | . 2 ⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
| 5 | ecopopr.cl | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 6 | ecopopr.ass | . . 3 ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) | |
| 7 | ecopopr.can | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) | |
| 8 | 1, 3, 5, 6, 7 | ecopovtrn 8752 | . 2 ⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
| 9 | vex 3441 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 10 | vex 3441 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
| 11 | 9, 10, 3 | caovcom 7551 | . . . . . . . 8 ⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
| 12 | 1 | ecopoveq 8750 | . . . . . . . 8 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
| 13 | 11, 12 | mpbiri 258 | . . . . . . 7 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 14 | 13 | anidms 566 | . . . . . 6 ⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 15 | 14 | rgen2 3173 | . . . . 5 ⊢ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
| 16 | breq12 5100 | . . . . . . 7 ⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) | |
| 17 | 16 | anidms 566 | . . . . . 6 ⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
| 18 | 17 | ralxp 5787 | . . . . 5 ⊢ (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
| 19 | 15, 18 | mpbir 231 | . . . 4 ⊢ ∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 |
| 20 | 19 | rspec 3224 | . . 3 ⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
| 21 | opabssxp 5713 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) | |
| 22 | 1, 21 | eqsstri 3977 | . . . . 5 ⊢ ∼ ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
| 23 | 22 | ssbri 5140 | . . . 4 ⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
| 24 | brxp 5670 | . . . . 5 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) | |
| 25 | 24 | simplbi 497 | . . . 4 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 26 | 23, 25 | syl 17 | . . 3 ⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
| 27 | 20, 26 | impbii 209 | . 2 ⊢ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓) |
| 28 | 2, 4, 8, 27 | iseri 8657 | 1 ⊢ ∼ Er (𝑆 × 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 〈cop 4583 class class class wbr 5095 {copab 5157 × cxp 5619 (class class class)co 7354 Er wer 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fv 6496 df-ov 7357 df-er 8630 |
| This theorem is referenced by: enqer 10821 enrer 10963 |
| Copyright terms: Public domain | W3C validator |