Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecopover | Structured version Visualization version GIF version |
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
ecopopr.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
ecopopr.com | ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
ecopopr.cl | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
ecopopr.ass | ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
ecopopr.can | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
ecopover | ⊢ ∼ Er (𝑆 × 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
2 | 1 | relopabiv 5730 | . 2 ⊢ Rel ∼ |
3 | ecopopr.com | . . 3 ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) | |
4 | 1, 3 | ecopovsym 8608 | . 2 ⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
5 | ecopopr.cl | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
6 | ecopopr.ass | . . 3 ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) | |
7 | ecopopr.can | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) | |
8 | 1, 3, 5, 6, 7 | ecopovtrn 8609 | . 2 ⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
9 | vex 3436 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
10 | vex 3436 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
11 | 9, 10, 3 | caovcom 7469 | . . . . . . . 8 ⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
12 | 1 | ecopoveq 8607 | . . . . . . . 8 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
13 | 11, 12 | mpbiri 257 | . . . . . . 7 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
14 | 13 | anidms 567 | . . . . . 6 ⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
15 | 14 | rgen2 3120 | . . . . 5 ⊢ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉 |
16 | breq12 5079 | . . . . . . 7 ⊢ ((𝑓 = 〈𝑔, ℎ〉 ∧ 𝑓 = 〈𝑔, ℎ〉) → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) | |
17 | 16 | anidms 567 | . . . . . 6 ⊢ (𝑓 = 〈𝑔, ℎ〉 → (𝑓 ∼ 𝑓 ↔ 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉)) |
18 | 17 | ralxp 5750 | . . . . 5 ⊢ (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 〈𝑔, ℎ〉 ∼ 〈𝑔, ℎ〉) |
19 | 15, 18 | mpbir 230 | . . . 4 ⊢ ∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 |
20 | 19 | rspec 3133 | . . 3 ⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
21 | opabssxp 5679 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) | |
22 | 1, 21 | eqsstri 3955 | . . . . 5 ⊢ ∼ ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
23 | 22 | ssbri 5119 | . . . 4 ⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
24 | brxp 5636 | . . . . 5 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) | |
25 | 24 | simplbi 498 | . . . 4 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
26 | 23, 25 | syl 17 | . . 3 ⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
27 | 20, 26 | impbii 208 | . 2 ⊢ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓) |
28 | 2, 4, 8, 27 | iseri 8525 | 1 ⊢ ∼ Er (𝑆 × 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 〈cop 4567 class class class wbr 5074 {copab 5136 × cxp 5587 (class class class)co 7275 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-er 8498 |
This theorem is referenced by: enqer 10677 enrer 10819 |
Copyright terms: Public domain | W3C validator |