![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecopover | Structured version Visualization version GIF version |
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
ecopopr.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
ecopopr.com | ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) |
ecopopr.cl | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
ecopopr.ass | ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
ecopopr.can | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
ecopover | ⊢ ∼ Er (𝑆 × 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . 3 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
2 | 1 | relopabiv 5777 | . 2 ⊢ Rel ∼ |
3 | ecopopr.com | . . 3 ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) | |
4 | 1, 3 | ecopovsym 8759 | . 2 ⊢ (𝑓 ∼ 𝑔 → 𝑔 ∼ 𝑓) |
5 | ecopopr.cl | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
6 | ecopopr.ass | . . 3 ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) | |
7 | ecopopr.can | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) | |
8 | 1, 3, 5, 6, 7 | ecopovtrn 8760 | . 2 ⊢ ((𝑓 ∼ 𝑔 ∧ 𝑔 ∼ ℎ) → 𝑓 ∼ ℎ) |
9 | vex 3450 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
10 | vex 3450 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
11 | 9, 10, 3 | caovcom 7552 | . . . . . . . 8 ⊢ (𝑔 + ℎ) = (ℎ + 𝑔) |
12 | 1 | ecopoveq 8758 | . . . . . . . 8 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩ ↔ (𝑔 + ℎ) = (ℎ + 𝑔))) |
13 | 11, 12 | mpbiri 258 | . . . . . . 7 ⊢ (((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩) |
14 | 13 | anidms 568 | . . . . . 6 ⊢ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) → ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩) |
15 | 14 | rgen2 3195 | . . . . 5 ⊢ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩ |
16 | breq12 5111 | . . . . . . 7 ⊢ ((𝑓 = ⟨𝑔, ℎ⟩ ∧ 𝑓 = ⟨𝑔, ℎ⟩) → (𝑓 ∼ 𝑓 ↔ ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩)) | |
17 | 16 | anidms 568 | . . . . . 6 ⊢ (𝑓 = ⟨𝑔, ℎ⟩ → (𝑓 ∼ 𝑓 ↔ ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩)) |
18 | 17 | ralxp 5798 | . . . . 5 ⊢ (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 ↔ ∀𝑔 ∈ 𝑆 ∀ℎ ∈ 𝑆 ⟨𝑔, ℎ⟩ ∼ ⟨𝑔, ℎ⟩) |
19 | 15, 18 | mpbir 230 | . . . 4 ⊢ ∀𝑓 ∈ (𝑆 × 𝑆)𝑓 ∼ 𝑓 |
20 | 19 | rspec 3234 | . . 3 ⊢ (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 ∼ 𝑓) |
21 | opabssxp 5725 | . . . . . 6 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) | |
22 | 1, 21 | eqsstri 3979 | . . . . 5 ⊢ ∼ ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆)) |
23 | 22 | ssbri 5151 | . . . 4 ⊢ (𝑓 ∼ 𝑓 → 𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓) |
24 | brxp 5682 | . . . . 5 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆))) | |
25 | 24 | simplbi 499 | . . . 4 ⊢ (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
26 | 23, 25 | syl 17 | . . 3 ⊢ (𝑓 ∼ 𝑓 → 𝑓 ∈ (𝑆 × 𝑆)) |
27 | 20, 26 | impbii 208 | . 2 ⊢ (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 ∼ 𝑓) |
28 | 2, 4, 8, 27 | iseri 8676 | 1 ⊢ ∼ Er (𝑆 × 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3065 ⟨cop 4593 class class class wbr 5106 {copab 5168 × cxp 5632 (class class class)co 7358 Er wer 8646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fv 6505 df-ov 7361 df-er 8649 |
This theorem is referenced by: enqer 10858 enrer 11000 |
Copyright terms: Public domain | W3C validator |