![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frins | Structured version Visualization version GIF version |
Description: Founded Induction Schema. If a property passes from all elements less than 𝑦 of a founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
frins.1 | ⊢ 𝑅 Fr 𝐴 |
frins.2 | ⊢ 𝑅 Se 𝐴 |
frins.3 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
Ref | Expression |
---|---|
frins | ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frins.1 | . . 3 ⊢ 𝑅 Fr 𝐴 | |
2 | frins.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | frins.3 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) | |
4 | 3 | frinsg 32075 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
5 | 1, 2, 4 | mp2an 672 | . 2 ⊢ ∀𝑦 ∈ 𝐴 𝜑 |
6 | 5 | rspec 3080 | 1 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∀wral 3061 [wsbc 3587 Fr wfr 5205 Se wse 5206 Predcpred 5820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-om 7211 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-trpred 32047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |