| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfis2f | Structured version Visualization version GIF version | ||
| Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| wfis2f.1 | ⊢ 𝑅 We 𝐴 |
| wfis2f.2 | ⊢ 𝑅 Se 𝐴 |
| wfis2f.3 | ⊢ Ⅎ𝑦𝜓 |
| wfis2f.4 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
| wfis2f.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| wfis2f | ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis2f.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
| 2 | wfis2f.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
| 3 | wfis2f.3 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 4 | wfis2f.4 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 5 | wfis2f.5 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
| 6 | 3, 4, 5 | wfis2fg 6326 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 1, 2, 6 | mp2an 692 | . 2 ⊢ ∀𝑦 ∈ 𝐴 𝜑 |
| 8 | 7 | rspec 3228 | 1 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 Se wse 5589 We wwe 5590 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |