Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephsuc2 | Structured version Visualization version GIF version |
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9233 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9629. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephsuc2 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon 9756 | . . . . . . 7 ⊢ (ℵ‘suc 𝐴) ∈ On | |
2 | 1 | oneli 6359 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ∈ On) |
3 | alephcard 9757 | . . . . . . . . 9 ⊢ (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | |
4 | iscard 9664 | . . . . . . . . 9 ⊢ ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴))) | |
5 | 3, 4 | mpbi 229 | . . . . . . . 8 ⊢ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)) |
6 | 5 | simpri 485 | . . . . . . 7 ⊢ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴) |
7 | 6 | rspec 3131 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ≺ (ℵ‘suc 𝐴)) |
8 | 2, 7 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
9 | sdomel 8860 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) | |
10 | 1, 9 | mpan2 687 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) |
11 | 10 | imp 406 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)) → 𝑦 ∈ (ℵ‘suc 𝐴)) |
12 | 8, 11 | impbii 208 | . . . 4 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
13 | breq1 5073 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑦 ≺ (ℵ‘suc 𝐴))) | |
14 | 13 | elrab 3617 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
15 | 12, 14 | bitr4i 277 | . . 3 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
16 | 15 | eqriv 2735 | . 2 ⊢ (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} |
17 | alephsucdom 9766 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ≼ (ℵ‘𝐴) ↔ 𝑥 ≺ (ℵ‘suc 𝐴))) | |
18 | 17 | rabbidv 3404 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
19 | 16, 18 | eqtr4id 2798 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 class class class wbr 5070 Oncon0 6251 suc csuc 6253 ‘cfv 6418 ≼ cdom 8689 ≺ csdm 8690 cardccrd 9624 ℵcale 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-har 9246 df-card 9628 df-aleph 9629 |
This theorem is referenced by: alephsuc3 10267 |
Copyright terms: Public domain | W3C validator |