![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsuc2 | Structured version Visualization version GIF version |
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9538 function by transfinite recursion, starting from Ο. Using this theorem we could define the aleph function with {π§ β On β£ π§ βΌ π₯} in place of β© {π§ β On β£ π₯ βΊ π§} in df-aleph 9934. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephsuc2 | β’ (π΄ β On β (β΅βsuc π΄) = {π₯ β On β£ π₯ βΌ (β΅βπ΄)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon 10063 | . . . . . . 7 β’ (β΅βsuc π΄) β On | |
2 | 1 | oneli 6478 | . . . . . 6 β’ (π¦ β (β΅βsuc π΄) β π¦ β On) |
3 | alephcard 10064 | . . . . . . . . 9 β’ (cardβ(β΅βsuc π΄)) = (β΅βsuc π΄) | |
4 | iscard 9969 | . . . . . . . . 9 β’ ((cardβ(β΅βsuc π΄)) = (β΅βsuc π΄) β ((β΅βsuc π΄) β On β§ βπ¦ β (β΅βsuc π΄)π¦ βΊ (β΅βsuc π΄))) | |
5 | 3, 4 | mpbi 229 | . . . . . . . 8 β’ ((β΅βsuc π΄) β On β§ βπ¦ β (β΅βsuc π΄)π¦ βΊ (β΅βsuc π΄)) |
6 | 5 | simpri 486 | . . . . . . 7 β’ βπ¦ β (β΅βsuc π΄)π¦ βΊ (β΅βsuc π΄) |
7 | 6 | rspec 3247 | . . . . . 6 β’ (π¦ β (β΅βsuc π΄) β π¦ βΊ (β΅βsuc π΄)) |
8 | 2, 7 | jca 512 | . . . . 5 β’ (π¦ β (β΅βsuc π΄) β (π¦ β On β§ π¦ βΊ (β΅βsuc π΄))) |
9 | sdomel 9123 | . . . . . . 7 β’ ((π¦ β On β§ (β΅βsuc π΄) β On) β (π¦ βΊ (β΅βsuc π΄) β π¦ β (β΅βsuc π΄))) | |
10 | 1, 9 | mpan2 689 | . . . . . 6 β’ (π¦ β On β (π¦ βΊ (β΅βsuc π΄) β π¦ β (β΅βsuc π΄))) |
11 | 10 | imp 407 | . . . . 5 β’ ((π¦ β On β§ π¦ βΊ (β΅βsuc π΄)) β π¦ β (β΅βsuc π΄)) |
12 | 8, 11 | impbii 208 | . . . 4 β’ (π¦ β (β΅βsuc π΄) β (π¦ β On β§ π¦ βΊ (β΅βsuc π΄))) |
13 | breq1 5151 | . . . . 5 β’ (π₯ = π¦ β (π₯ βΊ (β΅βsuc π΄) β π¦ βΊ (β΅βsuc π΄))) | |
14 | 13 | elrab 3683 | . . . 4 β’ (π¦ β {π₯ β On β£ π₯ βΊ (β΅βsuc π΄)} β (π¦ β On β§ π¦ βΊ (β΅βsuc π΄))) |
15 | 12, 14 | bitr4i 277 | . . 3 β’ (π¦ β (β΅βsuc π΄) β π¦ β {π₯ β On β£ π₯ βΊ (β΅βsuc π΄)}) |
16 | 15 | eqriv 2729 | . 2 β’ (β΅βsuc π΄) = {π₯ β On β£ π₯ βΊ (β΅βsuc π΄)} |
17 | alephsucdom 10073 | . . 3 β’ (π΄ β On β (π₯ βΌ (β΅βπ΄) β π₯ βΊ (β΅βsuc π΄))) | |
18 | 17 | rabbidv 3440 | . 2 β’ (π΄ β On β {π₯ β On β£ π₯ βΌ (β΅βπ΄)} = {π₯ β On β£ π₯ βΊ (β΅βsuc π΄)}) |
19 | 16, 18 | eqtr4id 2791 | 1 β’ (π΄ β On β (β΅βsuc π΄) = {π₯ β On β£ π₯ βΌ (β΅βπ΄)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 class class class wbr 5148 Oncon0 6364 suc csuc 6366 βcfv 6543 βΌ cdom 8936 βΊ csdm 8937 cardccrd 9929 β΅cale 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-oi 9504 df-har 9551 df-card 9933 df-aleph 9934 |
This theorem is referenced by: alephsuc3 10574 |
Copyright terms: Public domain | W3C validator |