MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc2 Structured version   Visualization version   GIF version

Theorem alephsuc2 10120
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9584 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧𝑥} in place of {𝑧 ∈ On ∣ 𝑥𝑧} in df-aleph 9980. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsuc2 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)})
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephsuc2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 alephon 10109 . . . . . . 7 (ℵ‘suc 𝐴) ∈ On
21oneli 6498 . . . . . 6 (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ∈ On)
3 alephcard 10110 . . . . . . . . 9 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
4 iscard 10015 . . . . . . . . 9 ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)))
53, 4mpbi 230 . . . . . . . 8 ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴))
65simpri 485 . . . . . . 7 𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)
76rspec 3250 . . . . . 6 (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ≺ (ℵ‘suc 𝐴))
82, 7jca 511 . . . . 5 (𝑦 ∈ (ℵ‘suc 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)))
9 sdomel 9164 . . . . . . 7 ((𝑦 ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴)))
101, 9mpan2 691 . . . . . 6 (𝑦 ∈ On → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴)))
1110imp 406 . . . . 5 ((𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)) → 𝑦 ∈ (ℵ‘suc 𝐴))
128, 11impbii 209 . . . 4 (𝑦 ∈ (ℵ‘suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)))
13 breq1 5146 . . . . 5 (𝑥 = 𝑦 → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑦 ≺ (ℵ‘suc 𝐴)))
1413elrab 3692 . . . 4 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)))
1512, 14bitr4i 278 . . 3 (𝑦 ∈ (ℵ‘suc 𝐴) ↔ 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)})
1615eqriv 2734 . 2 (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}
17 alephsucdom 10119 . . 3 (𝐴 ∈ On → (𝑥 ≼ (ℵ‘𝐴) ↔ 𝑥 ≺ (ℵ‘suc 𝐴)))
1817rabbidv 3444 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)})
1916, 18eqtr4id 2796 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436   class class class wbr 5143  Oncon0 6384  suc csuc 6386  cfv 6561  cdom 8983  csdm 8984  cardccrd 9975  cale 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-har 9597  df-card 9979  df-aleph 9980
This theorem is referenced by:  alephsuc3  10620
  Copyright terms: Public domain W3C validator