![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsuc2 | Structured version Visualization version GIF version |
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 8861 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9222. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephsuc2 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsucdom 9358 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ≼ (ℵ‘𝐴) ↔ 𝑥 ≺ (ℵ‘suc 𝐴))) | |
2 | 1 | rabbidv 3428 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
3 | alephon 9348 | . . . . . . 7 ⊢ (ℵ‘suc 𝐴) ∈ On | |
4 | 3 | oneli 6180 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ∈ On) |
5 | alephcard 9349 | . . . . . . . . 9 ⊢ (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | |
6 | iscard 9257 | . . . . . . . . 9 ⊢ ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴))) | |
7 | 5, 6 | mpbi 231 | . . . . . . . 8 ⊢ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)) |
8 | 7 | simpri 486 | . . . . . . 7 ⊢ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴) |
9 | 8 | rspec 3176 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ≺ (ℵ‘suc 𝐴)) |
10 | 4, 9 | jca 512 | . . . . 5 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
11 | sdomel 8518 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) | |
12 | 3, 11 | mpan2 687 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) |
13 | 12 | imp 407 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)) → 𝑦 ∈ (ℵ‘suc 𝐴)) |
14 | 10, 13 | impbii 210 | . . . 4 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
15 | breq1 4971 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑦 ≺ (ℵ‘suc 𝐴))) | |
16 | 15 | elrab 3621 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
17 | 14, 16 | bitr4i 279 | . . 3 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
18 | 17 | eqriv 2794 | . 2 ⊢ (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} |
19 | 2, 18 | syl6reqr 2852 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 {crab 3111 class class class wbr 4968 Oncon0 6073 suc csuc 6075 ‘cfv 6232 ≼ cdom 8362 ≺ csdm 8363 cardccrd 9217 ℵcale 9218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-oi 8827 df-har 8875 df-card 9221 df-aleph 9222 |
This theorem is referenced by: alephsuc3 9855 |
Copyright terms: Public domain | W3C validator |