| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsuc2 | Structured version Visualization version GIF version | ||
| Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9563 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9959. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsuc2 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon 10088 | . . . . . . 7 ⊢ (ℵ‘suc 𝐴) ∈ On | |
| 2 | 1 | oneli 6473 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ∈ On) |
| 3 | alephcard 10089 | . . . . . . . . 9 ⊢ (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | |
| 4 | iscard 9994 | . . . . . . . . 9 ⊢ ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)) |
| 6 | 5 | simpri 485 | . . . . . . 7 ⊢ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴) |
| 7 | 6 | rspec 3237 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ≺ (ℵ‘suc 𝐴)) |
| 8 | 2, 7 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 9 | sdomel 9143 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) | |
| 10 | 1, 9 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) |
| 11 | 10 | imp 406 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)) → 𝑦 ∈ (ℵ‘suc 𝐴)) |
| 12 | 8, 11 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 13 | breq1 5127 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑦 ≺ (ℵ‘suc 𝐴))) | |
| 14 | 13 | elrab 3676 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 15 | 12, 14 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
| 16 | 15 | eqriv 2733 | . 2 ⊢ (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} |
| 17 | alephsucdom 10098 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ≼ (ℵ‘𝐴) ↔ 𝑥 ≺ (ℵ‘suc 𝐴))) | |
| 18 | 17 | rabbidv 3428 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
| 19 | 16, 18 | eqtr4id 2790 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 class class class wbr 5124 Oncon0 6357 suc csuc 6359 ‘cfv 6536 ≼ cdom 8962 ≺ csdm 8963 cardccrd 9954 ℵcale 9955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-har 9576 df-card 9958 df-aleph 9959 |
| This theorem is referenced by: alephsuc3 10599 |
| Copyright terms: Public domain | W3C validator |