MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc2 Structured version   Visualization version   GIF version

Theorem alephsuc2 10074
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9538 function by transfinite recursion, starting from Ο‰. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 β‰Ό π‘₯} in place of ∩ {𝑧 ∈ On ∣ π‘₯ β‰Ί 𝑧} in df-aleph 9934. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsuc2 (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = {π‘₯ ∈ On ∣ π‘₯ β‰Ό (β„΅β€˜π΄)})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem alephsuc2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 alephon 10063 . . . . . . 7 (β„΅β€˜suc 𝐴) ∈ On
21oneli 6478 . . . . . 6 (𝑦 ∈ (β„΅β€˜suc 𝐴) β†’ 𝑦 ∈ On)
3 alephcard 10064 . . . . . . . . 9 (cardβ€˜(β„΅β€˜suc 𝐴)) = (β„΅β€˜suc 𝐴)
4 iscard 9969 . . . . . . . . 9 ((cardβ€˜(β„΅β€˜suc 𝐴)) = (β„΅β€˜suc 𝐴) ↔ ((β„΅β€˜suc 𝐴) ∈ On ∧ βˆ€π‘¦ ∈ (β„΅β€˜suc 𝐴)𝑦 β‰Ί (β„΅β€˜suc 𝐴)))
53, 4mpbi 229 . . . . . . . 8 ((β„΅β€˜suc 𝐴) ∈ On ∧ βˆ€π‘¦ ∈ (β„΅β€˜suc 𝐴)𝑦 β‰Ί (β„΅β€˜suc 𝐴))
65simpri 486 . . . . . . 7 βˆ€π‘¦ ∈ (β„΅β€˜suc 𝐴)𝑦 β‰Ί (β„΅β€˜suc 𝐴)
76rspec 3247 . . . . . 6 (𝑦 ∈ (β„΅β€˜suc 𝐴) β†’ 𝑦 β‰Ί (β„΅β€˜suc 𝐴))
82, 7jca 512 . . . . 5 (𝑦 ∈ (β„΅β€˜suc 𝐴) β†’ (𝑦 ∈ On ∧ 𝑦 β‰Ί (β„΅β€˜suc 𝐴)))
9 sdomel 9123 . . . . . . 7 ((𝑦 ∈ On ∧ (β„΅β€˜suc 𝐴) ∈ On) β†’ (𝑦 β‰Ί (β„΅β€˜suc 𝐴) β†’ 𝑦 ∈ (β„΅β€˜suc 𝐴)))
101, 9mpan2 689 . . . . . 6 (𝑦 ∈ On β†’ (𝑦 β‰Ί (β„΅β€˜suc 𝐴) β†’ 𝑦 ∈ (β„΅β€˜suc 𝐴)))
1110imp 407 . . . . 5 ((𝑦 ∈ On ∧ 𝑦 β‰Ί (β„΅β€˜suc 𝐴)) β†’ 𝑦 ∈ (β„΅β€˜suc 𝐴))
128, 11impbii 208 . . . 4 (𝑦 ∈ (β„΅β€˜suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 β‰Ί (β„΅β€˜suc 𝐴)))
13 breq1 5151 . . . . 5 (π‘₯ = 𝑦 β†’ (π‘₯ β‰Ί (β„΅β€˜suc 𝐴) ↔ 𝑦 β‰Ί (β„΅β€˜suc 𝐴)))
1413elrab 3683 . . . 4 (𝑦 ∈ {π‘₯ ∈ On ∣ π‘₯ β‰Ί (β„΅β€˜suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 β‰Ί (β„΅β€˜suc 𝐴)))
1512, 14bitr4i 277 . . 3 (𝑦 ∈ (β„΅β€˜suc 𝐴) ↔ 𝑦 ∈ {π‘₯ ∈ On ∣ π‘₯ β‰Ί (β„΅β€˜suc 𝐴)})
1615eqriv 2729 . 2 (β„΅β€˜suc 𝐴) = {π‘₯ ∈ On ∣ π‘₯ β‰Ί (β„΅β€˜suc 𝐴)}
17 alephsucdom 10073 . . 3 (𝐴 ∈ On β†’ (π‘₯ β‰Ό (β„΅β€˜π΄) ↔ π‘₯ β‰Ί (β„΅β€˜suc 𝐴)))
1817rabbidv 3440 . 2 (𝐴 ∈ On β†’ {π‘₯ ∈ On ∣ π‘₯ β‰Ό (β„΅β€˜π΄)} = {π‘₯ ∈ On ∣ π‘₯ β‰Ί (β„΅β€˜suc 𝐴)})
1916, 18eqtr4id 2791 1 (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = {π‘₯ ∈ On ∣ π‘₯ β‰Ό (β„΅β€˜π΄)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   class class class wbr 5148  Oncon0 6364  suc csuc 6366  β€˜cfv 6543   β‰Ό cdom 8936   β‰Ί csdm 8937  cardccrd 9929  β„΅cale 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-oi 9504  df-har 9551  df-card 9933  df-aleph 9934
This theorem is referenced by:  alephsuc3  10574
  Copyright terms: Public domain W3C validator