| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsuc2 | Structured version Visualization version GIF version | ||
| Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9455 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9855. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephsuc2 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon 9982 | . . . . . . 7 ⊢ (ℵ‘suc 𝐴) ∈ On | |
| 2 | 1 | oneli 6426 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ∈ On) |
| 3 | alephcard 9983 | . . . . . . . . 9 ⊢ (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | |
| 4 | iscard 9890 | . . . . . . . . 9 ⊢ ((card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) ↔ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴))) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . . 8 ⊢ ((ℵ‘suc 𝐴) ∈ On ∧ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴)) |
| 6 | 5 | simpri 485 | . . . . . . 7 ⊢ ∀𝑦 ∈ (ℵ‘suc 𝐴)𝑦 ≺ (ℵ‘suc 𝐴) |
| 7 | 6 | rspec 3220 | . . . . . 6 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → 𝑦 ≺ (ℵ‘suc 𝐴)) |
| 8 | 2, 7 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 9 | sdomel 9048 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (ℵ‘suc 𝐴) ∈ On) → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) | |
| 10 | 1, 9 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 ≺ (ℵ‘suc 𝐴) → 𝑦 ∈ (ℵ‘suc 𝐴))) |
| 11 | 10 | imp 406 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴)) → 𝑦 ∈ (ℵ‘suc 𝐴)) |
| 12 | 8, 11 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 13 | breq1 5098 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑦 ≺ (ℵ‘suc 𝐴))) | |
| 14 | 13 | elrab 3650 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ (ℵ‘suc 𝐴))) |
| 15 | 12, 14 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ (ℵ‘suc 𝐴) ↔ 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
| 16 | 15 | eqriv 2726 | . 2 ⊢ (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)} |
| 17 | alephsucdom 9992 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ≼ (ℵ‘𝐴) ↔ 𝑥 ≺ (ℵ‘suc 𝐴))) | |
| 18 | 17 | rabbidv 3404 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘suc 𝐴)}) |
| 19 | 16, 18 | eqtr4id 2783 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 class class class wbr 5095 Oncon0 6311 suc csuc 6313 ‘cfv 6486 ≼ cdom 8877 ≺ csdm 8878 cardccrd 9850 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-har 9468 df-card 9854 df-aleph 9855 |
| This theorem is referenced by: alephsuc3 10493 |
| Copyright terms: Public domain | W3C validator |