Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2 Structured version   Visualization version   GIF version

Theorem wfis2 5861
 Description: Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis2.1 𝑅 We 𝐴
wfis2.2 𝑅 Se 𝐴
wfis2.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2.4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2 (𝑦𝐴𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem wfis2
StepHypRef Expression
1 wfis2.1 . . 3 𝑅 We 𝐴
2 wfis2.2 . . 3 𝑅 Se 𝐴
3 wfis2.3 . . . 4 (𝑦 = 𝑧 → (𝜑𝜓))
4 wfis2.4 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
53, 4wfis2g 5860 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
61, 2, 5mp2an 672 . 2 𝑦𝐴 𝜑
76rspec 3080 1 (𝑦𝐴𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 2145  ∀wral 3061   Se wse 5206   We wwe 5207  Predcpred 5820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821 This theorem is referenced by:  wfis3  5862
 Copyright terms: Public domain W3C validator