MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2 Structured version   Visualization version   GIF version

Theorem wfis2 6354
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis2.1 𝑅 We 𝐴
wfis2.2 𝑅 Se 𝐴
wfis2.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2.4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2 (𝑦𝐴𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem wfis2
StepHypRef Expression
1 wfis2.1 . . 3 𝑅 We 𝐴
2 wfis2.2 . . 3 𝑅 Se 𝐴
3 wfis2.3 . . . 4 (𝑦 = 𝑧 → (𝜑𝜓))
4 wfis2.4 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
53, 4wfis2g 6353 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
61, 2, 5mp2an 692 . 2 𝑦𝐴 𝜑
76rspec 3237 1 (𝑦𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3052   Se wse 5609   We wwe 5610  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295
This theorem is referenced by:  wfis3  6355
  Copyright terms: Public domain W3C validator