MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2 Structured version   Visualization version   GIF version

Theorem wfis2 6361
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis2.1 𝑅 We 𝐴
wfis2.2 𝑅 Se 𝐴
wfis2.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2.4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2 (𝑦𝐴𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem wfis2
StepHypRef Expression
1 wfis2.1 . . 3 𝑅 We 𝐴
2 wfis2.2 . . 3 𝑅 Se 𝐴
3 wfis2.3 . . . 4 (𝑦 = 𝑧 → (𝜑𝜓))
4 wfis2.4 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
53, 4wfis2g 6360 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
61, 2, 5mp2an 690 . 2 𝑦𝐴 𝜑
76rspec 3247 1 (𝑦𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3061   Se wse 5629   We wwe 5630  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300
This theorem is referenced by:  wfis3  6362
  Copyright terms: Public domain W3C validator