![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis2 | Structured version Visualization version GIF version |
Description: Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis2.1 | ⊢ 𝑅 We 𝐴 |
wfis2.2 | ⊢ 𝑅 Se 𝐴 |
wfis2.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis2.4 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis2 | ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis2.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfis2.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfis2.3 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | wfis2.4 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
5 | 3, 4 | wfis2g 5860 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
6 | 1, 2, 5 | mp2an 672 | . 2 ⊢ ∀𝑦 ∈ 𝐴 𝜑 |
7 | 6 | rspec 3080 | 1 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2145 ∀wral 3061 Se wse 5206 We wwe 5207 Predcpred 5820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 |
This theorem is referenced by: wfis3 5862 |
Copyright terms: Public domain | W3C validator |