![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isarep2 | Structured version Visualization version GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6636. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
isarep2.1 | ⊢ 𝐴 ∈ V |
isarep2.2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) |
Ref | Expression |
---|---|
isarep2 | ⊢ ∃𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 6015 | . . . 4 ⊢ (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) | |
2 | resopab 6034 | . . . . 5 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | imaeq1i 6056 | . . . 4 ⊢ (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
4 | 1, 3 | eqtr3i 2762 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
5 | funopab 6583 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | isarep2.2 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) | |
7 | 6 | rspec 3247 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
8 | nfv 1917 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
9 | 8 | mo3 2558 | . . . . . . 7 ⊢ (∃*𝑦𝜑 ↔ ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
10 | 7, 9 | sylibr 233 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
11 | moanimv 2615 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
12 | 10, 11 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
13 | 5, 12 | mpgbir 1801 | . . . 4 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
14 | isarep2.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
15 | 14 | funimaex 6636 | . . . 4 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V) |
16 | 13, 15 | ax-mp 5 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V |
17 | 4, 16 | eqeltri 2829 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ∈ V |
18 | 17 | isseti 3489 | 1 ⊢ ∃𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 [wsb 2067 ∈ wcel 2106 ∃*wmo 2532 ∀wral 3061 Vcvv 3474 {copab 5210 ↾ cres 5678 “ cima 5679 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |