Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isarep2 | Structured version Visualization version GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6505. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
isarep2.1 | ⊢ 𝐴 ∈ V |
isarep2.2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) |
Ref | Expression |
---|---|
isarep2 | ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 5914 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) | |
2 | resopab 5931 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | imaeq1i 5955 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
4 | 1, 3 | eqtr3i 2768 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
5 | funopab 6453 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | isarep2.2 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) | |
7 | 6 | rspec 3131 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
8 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
9 | 8 | mo3 2564 | . . . . . . 7 ⊢ (∃*𝑦𝜑 ↔ ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
10 | 7, 9 | sylibr 233 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
11 | moanimv 2621 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
12 | 10, 11 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
13 | 5, 12 | mpgbir 1803 | . . . 4 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
14 | isarep2.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
15 | 14 | funimaex 6505 | . . . 4 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V) |
16 | 13, 15 | ax-mp 5 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V |
17 | 4, 16 | eqeltri 2835 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ∈ V |
18 | 17 | isseti 3437 | 1 ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 [wsb 2068 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 Vcvv 3422 {copab 5132 ↾ cres 5582 “ cima 5583 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |