MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep2 Structured version   Visualization version   GIF version

Theorem isarep2 6658
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6655. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1 𝐴 ∈ V
isarep2.2 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
Assertion
Ref Expression
isarep2 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑦,𝑧   𝜑,𝑤   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑧)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 6033 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
2 resopab 6052 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32imaeq1i 6075 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
41, 3eqtr3i 2767 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
5 funopab 6601 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
6 isarep2.2 . . . . . . . 8 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
76rspec 3250 . . . . . . 7 (𝑥𝐴 → ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
8 nfv 1914 . . . . . . . 8 𝑧𝜑
98mo3 2564 . . . . . . 7 (∃*𝑦𝜑 ↔ ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
107, 9sylibr 234 . . . . . 6 (𝑥𝐴 → ∃*𝑦𝜑)
11 moanimv 2619 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
1210, 11mpbir 231 . . . . 5 ∃*𝑦(𝑥𝐴𝜑)
135, 12mpgbir 1799 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
14 isarep2.1 . . . . 5 𝐴 ∈ V
1514funimaex 6655 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V)
1613, 15ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V
174, 16eqeltri 2837 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ∈ V
1817isseti 3498 1 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  [wsb 2064  wcel 2108  ∃*wmo 2538  wral 3061  Vcvv 3480  {copab 5205  cres 5687  cima 5688  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator