MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep2 Structured version   Visualization version   GIF version

Theorem isarep2 6507
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6505. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1 𝐴 ∈ V
isarep2.2 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
Assertion
Ref Expression
isarep2 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑦,𝑧   𝜑,𝑤   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑧)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 5914 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
2 resopab 5931 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32imaeq1i 5955 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
41, 3eqtr3i 2768 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
5 funopab 6453 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
6 isarep2.2 . . . . . . . 8 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
76rspec 3131 . . . . . . 7 (𝑥𝐴 → ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
8 nfv 1918 . . . . . . . 8 𝑧𝜑
98mo3 2564 . . . . . . 7 (∃*𝑦𝜑 ↔ ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
107, 9sylibr 233 . . . . . 6 (𝑥𝐴 → ∃*𝑦𝜑)
11 moanimv 2621 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
1210, 11mpbir 230 . . . . 5 ∃*𝑦(𝑥𝐴𝜑)
135, 12mpgbir 1803 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
14 isarep2.1 . . . . 5 𝐴 ∈ V
1514funimaex 6505 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V)
1613, 15ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V
174, 16eqeltri 2835 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ∈ V
1817isseti 3437 1 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  ∃*wmo 2538  wral 3063  Vcvv 3422  {copab 5132  cres 5582  cima 5583  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator