MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep2 Structured version   Visualization version   GIF version

Theorem isarep2 6669
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6666. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1 𝐴 ∈ V
isarep2.2 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
Assertion
Ref Expression
isarep2 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑦,𝑧   𝜑,𝑤   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑧)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 6044 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
2 resopab 6063 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32imaeq1i 6086 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
41, 3eqtr3i 2770 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
5 funopab 6613 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
6 isarep2.2 . . . . . . . 8 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
76rspec 3256 . . . . . . 7 (𝑥𝐴 → ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
8 nfv 1913 . . . . . . . 8 𝑧𝜑
98mo3 2567 . . . . . . 7 (∃*𝑦𝜑 ↔ ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
107, 9sylibr 234 . . . . . 6 (𝑥𝐴 → ∃*𝑦𝜑)
11 moanimv 2622 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
1210, 11mpbir 231 . . . . 5 ∃*𝑦(𝑥𝐴𝜑)
135, 12mpgbir 1797 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
14 isarep2.1 . . . . 5 𝐴 ∈ V
1514funimaex 6666 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V)
1613, 15ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V
174, 16eqeltri 2840 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ∈ V
1817isseti 3506 1 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  [wsb 2064  wcel 2108  ∃*wmo 2541  wral 3067  Vcvv 3488  {copab 5228  cres 5702  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator