MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexw Structured version   Visualization version   GIF version

Theorem mpoexw 7892
Description: Weak version of mpoex 7893 that holds without ax-rep 5205. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion
Ref Expression
mpoexw (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpoexw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7376 . 2 Fun (𝑥𝐴, 𝑦𝐵𝐶)
3 mpoexw.4 . . . 4 𝑥𝐴𝑦𝐵 𝐶𝐷
41dmmpoga 7886 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵))
53, 4ax-mp 5 . . 3 dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵)
6 mpoexw.1 . . . 4 𝐴 ∈ V
7 mpoexw.2 . . . 4 𝐵 ∈ V
86, 7xpex 7581 . . 3 (𝐴 × 𝐵) ∈ V
95, 8eqeltri 2835 . 2 dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
101rnmpo 7385 . . 3 ran (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
11 mpoexw.3 . . . 4 𝐷 ∈ V
123rspec 3131 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦𝐵 𝐶𝐷)
1312r19.21bi 3132 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
14 eleq1a 2834 . . . . . . . 8 (𝐶𝐷 → (𝑧 = 𝐶𝑧𝐷))
1513, 14syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧𝐷))
1615rexlimdva 3212 . . . . . 6 (𝑥𝐴 → (∃𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
1716rexlimiv 3208 . . . . 5 (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷)
1817abssi 3999 . . . 4 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ⊆ 𝐷
1911, 18ssexi 5241 . . 3 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
2010, 19eqeltri 2835 . 2 ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
21 funexw 7768 . 2 ((Fun (𝑥𝐴, 𝑦𝐵𝐶) ∧ dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
222, 9, 20, 21mp3an 1459 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422   × cxp 5578  dom cdm 5580  ran crn 5581  Fun wfun 6412  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by:  prdsvallem  17082  prdsds  17092  plusffval  18247  grpsubfval  18538  mulgfval  18617  scaffval  20056  ipffval  20765
  Copyright terms: Public domain W3C validator