| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexw | Structured version Visualization version GIF version | ||
| Description: Weak version of mpoex 8011 that holds without ax-rep 5215. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| mpoexw.1 | ⊢ 𝐴 ∈ V |
| mpoexw.2 | ⊢ 𝐵 ∈ V |
| mpoexw.3 | ⊢ 𝐷 ∈ V |
| mpoexw.4 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| mpoexw | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpofun 7470 | . 2 ⊢ Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 3 | mpoexw.4 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
| 4 | 1 | dmmpoga 8005 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵)) |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵) |
| 6 | mpoexw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 7 | mpoexw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 8 | 6, 7 | xpex 7686 | . . 3 ⊢ (𝐴 × 𝐵) ∈ V |
| 9 | 5, 8 | eqeltri 2827 | . 2 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 10 | 1 | rnmpo 7479 | . . 3 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
| 11 | mpoexw.3 | . . . 4 ⊢ 𝐷 ∈ V | |
| 12 | 3 | rspec 3223 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
| 13 | 12 | r19.21bi 3224 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
| 14 | eleq1a 2826 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐷 → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
| 16 | 15 | rexlimdva 3133 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
| 17 | 16 | rexlimiv 3126 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷) |
| 18 | 17 | abssi 4015 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ⊆ 𝐷 |
| 19 | 11, 18 | ssexi 5258 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| 20 | 10, 19 | eqeltri 2827 | . 2 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 21 | funexw 7884 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | |
| 22 | 2, 9, 20, 21 | mp3an 1463 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 × cxp 5612 dom cdm 5614 ran crn 5615 Fun wfun 6475 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: mptmpoopabbrd 8012 prdsvallem 17358 prdsds 17368 plusffval 18554 grpsubfval 18896 mulgfval 18982 scaffval 20813 ipffval 21585 |
| Copyright terms: Public domain | W3C validator |