MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexw Structured version   Visualization version   GIF version

Theorem mpoexw 8069
Description: Weak version of mpoex 8070 that holds without ax-rep 5285. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion
Ref Expression
mpoexw (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpoexw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7535 . 2 Fun (𝑥𝐴, 𝑦𝐵𝐶)
3 mpoexw.4 . . . 4 𝑥𝐴𝑦𝐵 𝐶𝐷
41dmmpoga 8063 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵))
53, 4ax-mp 5 . . 3 dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵)
6 mpoexw.1 . . . 4 𝐴 ∈ V
7 mpoexw.2 . . . 4 𝐵 ∈ V
86, 7xpex 7744 . . 3 (𝐴 × 𝐵) ∈ V
95, 8eqeltri 2828 . 2 dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
101rnmpo 7545 . . 3 ran (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
11 mpoexw.3 . . . 4 𝐷 ∈ V
123rspec 3246 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦𝐵 𝐶𝐷)
1312r19.21bi 3247 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
14 eleq1a 2827 . . . . . . . 8 (𝐶𝐷 → (𝑧 = 𝐶𝑧𝐷))
1513, 14syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧𝐷))
1615rexlimdva 3154 . . . . . 6 (𝑥𝐴 → (∃𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
1716rexlimiv 3147 . . . . 5 (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷)
1817abssi 4067 . . . 4 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ⊆ 𝐷
1911, 18ssexi 5322 . . 3 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
2010, 19eqeltri 2828 . 2 ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
21 funexw 7942 . 2 ((Fun (𝑥𝐴, 𝑦𝐵𝐶) ∧ dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
222, 9, 20, 21mp3an 1460 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473   × cxp 5674  dom cdm 5676  ran crn 5677  Fun wfun 6537  cmpo 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980
This theorem is referenced by:  mptmpoopabbrd  8071  prdsvallem  17407  prdsds  17417  plusffval  18577  grpsubfval  18911  mulgfval  18995  scaffval  20722  ipffval  21511
  Copyright terms: Public domain W3C validator