MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexw Structured version   Visualization version   GIF version

Theorem mpoexw 7912
Description: Weak version of mpoex 7913 that holds without ax-rep 5214. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion
Ref Expression
mpoexw (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpoexw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7392 . 2 Fun (𝑥𝐴, 𝑦𝐵𝐶)
3 mpoexw.4 . . . 4 𝑥𝐴𝑦𝐵 𝐶𝐷
41dmmpoga 7906 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵))
53, 4ax-mp 5 . . 3 dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵)
6 mpoexw.1 . . . 4 𝐴 ∈ V
7 mpoexw.2 . . . 4 𝐵 ∈ V
86, 7xpex 7597 . . 3 (𝐴 × 𝐵) ∈ V
95, 8eqeltri 2837 . 2 dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
101rnmpo 7401 . . 3 ran (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
11 mpoexw.3 . . . 4 𝐷 ∈ V
123rspec 3134 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦𝐵 𝐶𝐷)
1312r19.21bi 3135 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
14 eleq1a 2836 . . . . . . . 8 (𝐶𝐷 → (𝑧 = 𝐶𝑧𝐷))
1513, 14syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧𝐷))
1615rexlimdva 3215 . . . . . 6 (𝑥𝐴 → (∃𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
1716rexlimiv 3211 . . . . 5 (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷)
1817abssi 4008 . . . 4 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ⊆ 𝐷
1911, 18ssexi 5250 . . 3 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
2010, 19eqeltri 2837 . 2 ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
21 funexw 7788 . 2 ((Fun (𝑥𝐴, 𝑦𝐵𝐶) ∧ dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
222, 9, 20, 21mp3an 1460 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {cab 2717  wral 3066  wrex 3067  Vcvv 3431   × cxp 5588  dom cdm 5590  ran crn 5591  Fun wfun 6426  cmpo 7273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825
This theorem is referenced by:  prdsvallem  17163  prdsds  17173  plusffval  18330  grpsubfval  18621  mulgfval  18700  scaffval  20139  ipffval  20851
  Copyright terms: Public domain W3C validator