MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexw Structured version   Visualization version   GIF version

Theorem mpoexw 8119
Description: Weak version of mpoex 8120 that holds without ax-rep 5303. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1 𝐴 ∈ V
mpoexw.2 𝐵 ∈ V
mpoexw.3 𝐷 ∈ V
mpoexw.4 𝑥𝐴𝑦𝐵 𝐶𝐷
Assertion
Ref Expression
mpoexw (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpoexw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 7574 . 2 Fun (𝑥𝐴, 𝑦𝐵𝐶)
3 mpoexw.4 . . . 4 𝑥𝐴𝑦𝐵 𝐶𝐷
41dmmpoga 8114 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵))
53, 4ax-mp 5 . . 3 dom (𝑥𝐴, 𝑦𝐵𝐶) = (𝐴 × 𝐵)
6 mpoexw.1 . . . 4 𝐴 ∈ V
7 mpoexw.2 . . . 4 𝐵 ∈ V
86, 7xpex 7788 . . 3 (𝐴 × 𝐵) ∈ V
95, 8eqeltri 2840 . 2 dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
101rnmpo 7583 . . 3 ran (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
11 mpoexw.3 . . . 4 𝐷 ∈ V
123rspec 3256 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦𝐵 𝐶𝐷)
1312r19.21bi 3257 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
14 eleq1a 2839 . . . . . . . 8 (𝐶𝐷 → (𝑧 = 𝐶𝑧𝐷))
1513, 14syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧𝐷))
1615rexlimdva 3161 . . . . . 6 (𝑥𝐴 → (∃𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
1716rexlimiv 3154 . . . . 5 (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷)
1817abssi 4093 . . . 4 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ⊆ 𝐷
1911, 18ssexi 5340 . . 3 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
2010, 19eqeltri 2840 . 2 ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
21 funexw 7992 . 2 ((Fun (𝑥𝐴, 𝑦𝐵𝐶) ∧ dom (𝑥𝐴, 𝑦𝐵𝐶) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
222, 9, 20, 21mp3an 1461 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488   × cxp 5698  dom cdm 5700  ran crn 5701  Fun wfun 6567  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  mptmpoopabbrd  8121  prdsvallem  17514  prdsds  17524  plusffval  18684  grpsubfval  19023  mulgfval  19109  scaffval  20900  ipffval  21689
  Copyright terms: Public domain W3C validator