![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexw | Structured version Visualization version GIF version |
Description: Weak version of mpoex 8078 that holds without ax-rep 5279. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
mpoexw.1 | ⊢ 𝐴 ∈ V |
mpoexw.2 | ⊢ 𝐵 ∈ V |
mpoexw.3 | ⊢ 𝐷 ∈ V |
mpoexw.4 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
Ref | Expression |
---|---|
mpoexw | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 7538 | . 2 ⊢ Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
3 | mpoexw.4 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
4 | 1 | dmmpoga 8071 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵)) |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝐴 × 𝐵) |
6 | mpoexw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | mpoexw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
8 | 6, 7 | xpex 7749 | . . 3 ⊢ (𝐴 × 𝐵) ∈ V |
9 | 5, 8 | eqeltri 2825 | . 2 ⊢ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
10 | 1 | rnmpo 7548 | . . 3 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
11 | mpoexw.3 | . . . 4 ⊢ 𝐷 ∈ V | |
12 | 3 | rspec 3243 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
13 | 12 | r19.21bi 3244 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
14 | eleq1a 2824 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐷 → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
16 | 15 | rexlimdva 3151 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
17 | 16 | rexlimiv 3144 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷) |
18 | 17 | abssi 4063 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ⊆ 𝐷 |
19 | 11, 18 | ssexi 5316 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
20 | 10, 19 | eqeltri 2825 | . 2 ⊢ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
21 | funexw 7949 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | |
22 | 2, 9, 20, 21 | mp3an 1458 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3057 ∃wrex 3066 Vcvv 3470 × cxp 5670 dom cdm 5672 ran crn 5673 Fun wfun 6536 ∈ cmpo 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 |
This theorem is referenced by: mptmpoopabbrd 8079 prdsvallem 17429 prdsds 17439 plusffval 18599 grpsubfval 18933 mulgfval 19018 scaffval 20756 ipffval 21573 |
Copyright terms: Public domain | W3C validator |