MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbijnn Structured version   Visualization version   GIF version

Theorem ackbijnn 15742
Description: Translate the Ackermann bijection ackbij1 10139 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
ackbijnn.1 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
Assertion
Ref Expression
ackbijnn 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ackbijnn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgval2 14292 . . . 4 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21hashgf1o 13885 . . 3 (♯ ↾ ω):ω–1-1-onto→ℕ0
3 sneq 4587 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
4 pweq 4565 . . . . . . . . . 10 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
53, 4xpeq12d 5652 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑤} × 𝒫 𝑤) = ({𝑦} × 𝒫 𝑦))
65cbviunv 4991 . . . . . . . 8 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑧 ({𝑦} × 𝒫 𝑦)
7 iuneq1 4960 . . . . . . . 8 (𝑧 = 𝑥 𝑦𝑧 ({𝑦} × 𝒫 𝑦) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
86, 7eqtrid 2780 . . . . . . 7 (𝑧 = 𝑥 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
98fveq2d 6835 . . . . . 6 (𝑧 = 𝑥 → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109cbvmptv 5199 . . . . 5 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
1110ackbij1 10139 . . . 4 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω
12 f1ocnv 6783 . . . . . 6 ((♯ ↾ ω):ω–1-1-onto→ℕ0(♯ ↾ ω):ℕ01-1-onto→ω)
132, 12ax-mp 5 . . . . 5 (♯ ↾ ω):ℕ01-1-onto→ω
14 f1opwfi 9251 . . . . 5 ((♯ ↾ ω):ℕ01-1-onto→ω → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin))
1513, 14ax-mp 5 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)
16 f1oco 6794 . . . 4 (((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω ∧ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)) → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω)
1711, 15, 16mp2an 692 . . 3 ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω
18 f1oco 6794 . . 3 (((♯ ↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω) → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
192, 17, 18mp2an 692 . 2 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
20 inss2 4187 . . . . . . . . . 10 (𝒫 ω ∩ Fin) ⊆ Fin
21 f1of 6771 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin) → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2215, 21ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin)
23 eqid 2733 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))
2423fmpt 7052 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin) ↔ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2522, 24mpbir 231 . . . . . . . . . . 11 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin)
2625rspec 3224 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
2720, 26sselid 3928 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ Fin)
28 snfi 8976 . . . . . . . . . . 11 {𝑤} ∈ Fin
29 cnvimass 6038 . . . . . . . . . . . . . . 15 ((♯ ↾ ω) “ 𝑥) ⊆ dom (♯ ↾ ω)
30 dmhashres 14255 . . . . . . . . . . . . . . 15 dom (♯ ↾ ω) = ω
3129, 30sseqtri 3979 . . . . . . . . . . . . . 14 ((♯ ↾ ω) “ 𝑥) ⊆ ω
32 onfin2 9136 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
33 inss2 4187 . . . . . . . . . . . . . . 15 (On ∩ Fin) ⊆ Fin
3432, 33eqsstri 3977 . . . . . . . . . . . . . 14 ω ⊆ Fin
3531, 34sstri 3940 . . . . . . . . . . . . 13 ((♯ ↾ ω) “ 𝑥) ⊆ Fin
36 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥))
3735, 36sselid 3928 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ Fin)
38 pwfi 9214 . . . . . . . . . . . 12 (𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin)
3937, 38sylib 218 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝒫 𝑤 ∈ Fin)
40 xpfi 9215 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ 𝒫 𝑤 ∈ Fin) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4128, 39, 40sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4241ralrimiva 3125 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
43 iunfi 9238 . . . . . . . . 9 ((((♯ ↾ ω) “ 𝑥) ∈ Fin ∧ ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
4427, 42, 43syl2anc 584 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
45 ficardom 9865 . . . . . . . 8 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4644, 45syl 17 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4746fvresd 6851 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
48 hashcard 14269 . . . . . . 7 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
4944, 48syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
50 xp1st 7962 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) ∈ {𝑤})
51 elsni 4594 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑤} → (1st𝑧) = 𝑤)
5250, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) = 𝑤)
5352rgen 3050 . . . . . . . . . 10 𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
5453rgenw 3052 . . . . . . . . 9 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
55 invdisj 5081 . . . . . . . . 9 (∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5654, 55mp1i 13 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5727, 41, 56hashiun 15736 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)))
58 sneq 4587 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → {𝑤} = {((♯ ↾ ω)‘𝑦)})
59 pweq 4565 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → 𝒫 𝑤 = 𝒫 ((♯ ↾ ω)‘𝑦))
6058, 59xpeq12d 5652 . . . . . . . . 9 (𝑤 = ((♯ ↾ ω)‘𝑦) → ({𝑤} × 𝒫 𝑤) = ({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦)))
6160fveq2d 6835 . . . . . . . 8 (𝑤 = ((♯ ↾ ω)‘𝑦) → (♯‘({𝑤} × 𝒫 𝑤)) = (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
62 elinel2 4151 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
63 f1of1 6770 . . . . . . . . . 10 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ01-1→ω)
6413, 63ax-mp 5 . . . . . . . . 9 (♯ ↾ ω):ℕ01-1→ω
65 elinel1 4150 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ 𝒫 ℕ0)
6665elpwid 4560 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
67 f1ores 6785 . . . . . . . . 9 (((♯ ↾ ω):ℕ01-1→ω ∧ 𝑥 ⊆ ℕ0) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
6864, 66, 67sylancr 587 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
69 fvres 6850 . . . . . . . . 9 (𝑦𝑥 → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
7069adantl 481 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
71 hashcl 14270 . . . . . . . . 9 (({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0)
72 nn0cn 12402 . . . . . . . . 9 ((♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0 → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7341, 71, 723syl 18 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7461, 62, 68, 70, 73fsumf1o 15637 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
75 snfi 8976 . . . . . . . . . 10 {((♯ ↾ ω)‘𝑦)} ∈ Fin
7666sselda 3930 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ ℕ0)
77 f1of 6771 . . . . . . . . . . . . . . 15 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ0⟶ω)
7813, 77ax-mp 5 . . . . . . . . . . . . . 14 (♯ ↾ ω):ℕ0⟶ω
7978ffvelcdmi 7025 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((♯ ↾ ω)‘𝑦) ∈ ω)
8076, 79syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ ω)
8134, 80sselid 3928 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ Fin)
82 pwfi 9214 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ Fin ↔ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
8381, 82sylib 218 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
84 hashxp 14348 . . . . . . . . . 10 (({((♯ ↾ ω)‘𝑦)} ∈ Fin ∧ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
8575, 83, 84sylancr 587 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
86 hashsng 14283 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ ω → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
8780, 86syl 17 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
88 hashpw 14350 . . . . . . . . . . . 12 (((♯ ↾ ω)‘𝑦) ∈ Fin → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
8981, 88syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
9080fvresd 6851 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = (♯‘((♯ ↾ ω)‘𝑦)))
91 f1ocnvfv2 7220 . . . . . . . . . . . . . 14 (((♯ ↾ ω):ω–1-1-onto→ℕ0𝑦 ∈ ℕ0) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
922, 76, 91sylancr 587 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9390, 92eqtr3d 2770 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9493oveq2d 7371 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑(♯‘((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
9589, 94eqtrd 2768 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑𝑦))
9687, 95oveq12d 7373 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))) = (1 · (2↑𝑦)))
97 2cn 12211 . . . . . . . . . . 11 2 ∈ ℂ
98 expcl 13993 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
9997, 76, 98sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑𝑦) ∈ ℂ)
10099mullidd 11141 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (1 · (2↑𝑦)) = (2↑𝑦))
10185, 96, 1003eqtrd 2772 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
102101sumeq2dv 15616 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = Σ𝑦𝑥 (2↑𝑦))
10357, 74, 1023eqtrd 2772 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (2↑𝑦))
10447, 49, 1033eqtrd 2772 . . . . 5 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = Σ𝑦𝑥 (2↑𝑦))
105104mpteq2ia 5190 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
10646adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
10726adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
108 eqidd 2734 . . . . . . 7 (⊤ → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))
109 eqidd 2734 . . . . . . 7 (⊤ → (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))))
110 iuneq1 4960 . . . . . . . 8 (𝑧 = ((♯ ↾ ω) “ 𝑥) → 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
111110fveq2d 6835 . . . . . . 7 (𝑧 = ((♯ ↾ ω) “ 𝑥) → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
112107, 108, 109, 111fmptco 7071 . . . . . 6 (⊤ → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
113 f1of 6771 . . . . . . . 8 ((♯ ↾ ω):ω–1-1-onto→ℕ0 → (♯ ↾ ω):ω⟶ℕ0)
1142, 113mp1i 13 . . . . . . 7 (⊤ → (♯ ↾ ω):ω⟶ℕ0)
115114feqmptd 6899 . . . . . 6 (⊤ → (♯ ↾ ω) = (𝑦 ∈ ω ↦ ((♯ ↾ ω)‘𝑦)))
116 fveq2 6831 . . . . . 6 (𝑦 = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) → ((♯ ↾ ω)‘𝑦) = ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
117106, 112, 115, 116fmptco 7071 . . . . 5 (⊤ → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))))
118117mptru 1548 . . . 4 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
119 ackbijnn.1 . . . 4 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
120105, 118, 1193eqtr4i 2766 . . 3 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹
121 f1oeq1 6759 . . 3 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹 → (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
122120, 121ax-mp 5 . 2 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
12319, 122mpbi 230 1 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wral 3048  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577   ciun 4943  Disj wdisj 5062  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  cres 5623  cima 5624  ccom 5625  Oncon0 6314  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  ωcom 7805  1st c1st 7928  Fincfn 8879  cardccrd 9839  cc 11015  1c1 11018   · cmul 11022  2c2 12191  0cn0 12392  cexp 13975  chash 14244  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601
This theorem is referenced by:  bitsinv2  16361
  Copyright terms: Public domain W3C validator