MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbijnn Structured version   Visualization version   GIF version

Theorem ackbijnn 15842
Description: Translate the Ackermann bijection ackbij1 10249 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
ackbijnn.1 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
Assertion
Ref Expression
ackbijnn 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ackbijnn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgval2 14394 . . . 4 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21hashgf1o 13987 . . 3 (♯ ↾ ω):ω–1-1-onto→ℕ0
3 sneq 4611 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
4 pweq 4589 . . . . . . . . . 10 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
53, 4xpeq12d 5685 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑤} × 𝒫 𝑤) = ({𝑦} × 𝒫 𝑦))
65cbviunv 5016 . . . . . . . 8 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑧 ({𝑦} × 𝒫 𝑦)
7 iuneq1 4984 . . . . . . . 8 (𝑧 = 𝑥 𝑦𝑧 ({𝑦} × 𝒫 𝑦) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
86, 7eqtrid 2782 . . . . . . 7 (𝑧 = 𝑥 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
98fveq2d 6879 . . . . . 6 (𝑧 = 𝑥 → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109cbvmptv 5225 . . . . 5 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
1110ackbij1 10249 . . . 4 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω
12 f1ocnv 6829 . . . . . 6 ((♯ ↾ ω):ω–1-1-onto→ℕ0(♯ ↾ ω):ℕ01-1-onto→ω)
132, 12ax-mp 5 . . . . 5 (♯ ↾ ω):ℕ01-1-onto→ω
14 f1opwfi 9366 . . . . 5 ((♯ ↾ ω):ℕ01-1-onto→ω → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin))
1513, 14ax-mp 5 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)
16 f1oco 6840 . . . 4 (((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω ∧ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)) → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω)
1711, 15, 16mp2an 692 . . 3 ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω
18 f1oco 6840 . . 3 (((♯ ↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω) → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
192, 17, 18mp2an 692 . 2 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
20 inss2 4213 . . . . . . . . . 10 (𝒫 ω ∩ Fin) ⊆ Fin
21 f1of 6817 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin) → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2215, 21ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin)
23 eqid 2735 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))
2423fmpt 7099 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin) ↔ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2522, 24mpbir 231 . . . . . . . . . . 11 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin)
2625rspec 3233 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
2720, 26sselid 3956 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ Fin)
28 snfi 9055 . . . . . . . . . . 11 {𝑤} ∈ Fin
29 cnvimass 6069 . . . . . . . . . . . . . . 15 ((♯ ↾ ω) “ 𝑥) ⊆ dom (♯ ↾ ω)
30 dmhashres 14357 . . . . . . . . . . . . . . 15 dom (♯ ↾ ω) = ω
3129, 30sseqtri 4007 . . . . . . . . . . . . . 14 ((♯ ↾ ω) “ 𝑥) ⊆ ω
32 onfin2 9238 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
33 inss2 4213 . . . . . . . . . . . . . . 15 (On ∩ Fin) ⊆ Fin
3432, 33eqsstri 4005 . . . . . . . . . . . . . 14 ω ⊆ Fin
3531, 34sstri 3968 . . . . . . . . . . . . 13 ((♯ ↾ ω) “ 𝑥) ⊆ Fin
36 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥))
3735, 36sselid 3956 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ Fin)
38 pwfi 9327 . . . . . . . . . . . 12 (𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin)
3937, 38sylib 218 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝒫 𝑤 ∈ Fin)
40 xpfi 9328 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ 𝒫 𝑤 ∈ Fin) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4128, 39, 40sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4241ralrimiva 3132 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
43 iunfi 9353 . . . . . . . . 9 ((((♯ ↾ ω) “ 𝑥) ∈ Fin ∧ ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
4427, 42, 43syl2anc 584 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
45 ficardom 9973 . . . . . . . 8 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4644, 45syl 17 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4746fvresd 6895 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
48 hashcard 14371 . . . . . . 7 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
4944, 48syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
50 xp1st 8018 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) ∈ {𝑤})
51 elsni 4618 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑤} → (1st𝑧) = 𝑤)
5250, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) = 𝑤)
5352rgen 3053 . . . . . . . . . 10 𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
5453rgenw 3055 . . . . . . . . 9 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
55 invdisj 5105 . . . . . . . . 9 (∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5654, 55mp1i 13 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5727, 41, 56hashiun 15836 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)))
58 sneq 4611 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → {𝑤} = {((♯ ↾ ω)‘𝑦)})
59 pweq 4589 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → 𝒫 𝑤 = 𝒫 ((♯ ↾ ω)‘𝑦))
6058, 59xpeq12d 5685 . . . . . . . . 9 (𝑤 = ((♯ ↾ ω)‘𝑦) → ({𝑤} × 𝒫 𝑤) = ({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦)))
6160fveq2d 6879 . . . . . . . 8 (𝑤 = ((♯ ↾ ω)‘𝑦) → (♯‘({𝑤} × 𝒫 𝑤)) = (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
62 elinel2 4177 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
63 f1of1 6816 . . . . . . . . . 10 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ01-1→ω)
6413, 63ax-mp 5 . . . . . . . . 9 (♯ ↾ ω):ℕ01-1→ω
65 elinel1 4176 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ 𝒫 ℕ0)
6665elpwid 4584 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
67 f1ores 6831 . . . . . . . . 9 (((♯ ↾ ω):ℕ01-1→ω ∧ 𝑥 ⊆ ℕ0) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
6864, 66, 67sylancr 587 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
69 fvres 6894 . . . . . . . . 9 (𝑦𝑥 → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
7069adantl 481 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
71 hashcl 14372 . . . . . . . . 9 (({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0)
72 nn0cn 12509 . . . . . . . . 9 ((♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0 → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7341, 71, 723syl 18 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7461, 62, 68, 70, 73fsumf1o 15737 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
75 snfi 9055 . . . . . . . . . 10 {((♯ ↾ ω)‘𝑦)} ∈ Fin
7666sselda 3958 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ ℕ0)
77 f1of 6817 . . . . . . . . . . . . . . 15 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ0⟶ω)
7813, 77ax-mp 5 . . . . . . . . . . . . . 14 (♯ ↾ ω):ℕ0⟶ω
7978ffvelcdmi 7072 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((♯ ↾ ω)‘𝑦) ∈ ω)
8076, 79syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ ω)
8134, 80sselid 3956 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ Fin)
82 pwfi 9327 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ Fin ↔ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
8381, 82sylib 218 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
84 hashxp 14450 . . . . . . . . . 10 (({((♯ ↾ ω)‘𝑦)} ∈ Fin ∧ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
8575, 83, 84sylancr 587 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
86 hashsng 14385 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ ω → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
8780, 86syl 17 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
88 hashpw 14452 . . . . . . . . . . . 12 (((♯ ↾ ω)‘𝑦) ∈ Fin → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
8981, 88syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
9080fvresd 6895 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = (♯‘((♯ ↾ ω)‘𝑦)))
91 f1ocnvfv2 7269 . . . . . . . . . . . . . 14 (((♯ ↾ ω):ω–1-1-onto→ℕ0𝑦 ∈ ℕ0) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
922, 76, 91sylancr 587 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9390, 92eqtr3d 2772 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9493oveq2d 7419 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑(♯‘((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
9589, 94eqtrd 2770 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑𝑦))
9687, 95oveq12d 7421 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))) = (1 · (2↑𝑦)))
97 2cn 12313 . . . . . . . . . . 11 2 ∈ ℂ
98 expcl 14095 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
9997, 76, 98sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑𝑦) ∈ ℂ)
10099mullidd 11251 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (1 · (2↑𝑦)) = (2↑𝑦))
10185, 96, 1003eqtrd 2774 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
102101sumeq2dv 15716 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = Σ𝑦𝑥 (2↑𝑦))
10357, 74, 1023eqtrd 2774 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (2↑𝑦))
10447, 49, 1033eqtrd 2774 . . . . 5 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = Σ𝑦𝑥 (2↑𝑦))
105104mpteq2ia 5216 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
10646adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
10726adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
108 eqidd 2736 . . . . . . 7 (⊤ → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))
109 eqidd 2736 . . . . . . 7 (⊤ → (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))))
110 iuneq1 4984 . . . . . . . 8 (𝑧 = ((♯ ↾ ω) “ 𝑥) → 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
111110fveq2d 6879 . . . . . . 7 (𝑧 = ((♯ ↾ ω) “ 𝑥) → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
112107, 108, 109, 111fmptco 7118 . . . . . 6 (⊤ → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
113 f1of 6817 . . . . . . . 8 ((♯ ↾ ω):ω–1-1-onto→ℕ0 → (♯ ↾ ω):ω⟶ℕ0)
1142, 113mp1i 13 . . . . . . 7 (⊤ → (♯ ↾ ω):ω⟶ℕ0)
115114feqmptd 6946 . . . . . 6 (⊤ → (♯ ↾ ω) = (𝑦 ∈ ω ↦ ((♯ ↾ ω)‘𝑦)))
116 fveq2 6875 . . . . . 6 (𝑦 = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) → ((♯ ↾ ω)‘𝑦) = ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
117106, 112, 115, 116fmptco 7118 . . . . 5 (⊤ → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))))
118117mptru 1547 . . . 4 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
119 ackbijnn.1 . . . 4 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
120105, 118, 1193eqtr4i 2768 . . 3 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹
121 f1oeq1 6805 . . 3 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹 → (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
122120, 121ax-mp 5 . 2 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
12319, 122mpbi 230 1 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3051  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   ciun 4967  Disj wdisj 5086  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  cres 5656  cima 5657  ccom 5658  Oncon0 6352  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  ωcom 7859  1st c1st 7984  Fincfn 8957  cardccrd 9947  cc 11125  1c1 11128   · cmul 11132  2c2 12293  0cn0 12499  cexp 14077  chash 14346  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701
This theorem is referenced by:  bitsinv2  16460
  Copyright terms: Public domain W3C validator