MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbijnn Structured version   Visualization version   GIF version

Theorem ackbijnn 15540
Description: Translate the Ackermann bijection ackbij1 9994 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
ackbijnn.1 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
Assertion
Ref Expression
ackbijnn 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ackbijnn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgval2 14093 . . . 4 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21hashgf1o 13691 . . 3 (♯ ↾ ω):ω–1-1-onto→ℕ0
3 sneq 4571 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
4 pweq 4549 . . . . . . . . . 10 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
53, 4xpeq12d 5620 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑤} × 𝒫 𝑤) = ({𝑦} × 𝒫 𝑦))
65cbviunv 4970 . . . . . . . 8 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑧 ({𝑦} × 𝒫 𝑦)
7 iuneq1 4940 . . . . . . . 8 (𝑧 = 𝑥 𝑦𝑧 ({𝑦} × 𝒫 𝑦) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
86, 7eqtrid 2790 . . . . . . 7 (𝑧 = 𝑥 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
98fveq2d 6778 . . . . . 6 (𝑧 = 𝑥 → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109cbvmptv 5187 . . . . 5 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
1110ackbij1 9994 . . . 4 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω
12 f1ocnv 6728 . . . . . 6 ((♯ ↾ ω):ω–1-1-onto→ℕ0(♯ ↾ ω):ℕ01-1-onto→ω)
132, 12ax-mp 5 . . . . 5 (♯ ↾ ω):ℕ01-1-onto→ω
14 f1opwfi 9123 . . . . 5 ((♯ ↾ ω):ℕ01-1-onto→ω → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin))
1513, 14ax-mp 5 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)
16 f1oco 6739 . . . 4 (((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω ∧ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)) → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω)
1711, 15, 16mp2an 689 . . 3 ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω
18 f1oco 6739 . . 3 (((♯ ↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω) → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
192, 17, 18mp2an 689 . 2 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
20 inss2 4163 . . . . . . . . . 10 (𝒫 ω ∩ Fin) ⊆ Fin
21 f1of 6716 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin) → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2215, 21ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin)
23 eqid 2738 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))
2423fmpt 6984 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin) ↔ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2522, 24mpbir 230 . . . . . . . . . . 11 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin)
2625rspec 3133 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
2720, 26sselid 3919 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ Fin)
28 snfi 8834 . . . . . . . . . . 11 {𝑤} ∈ Fin
29 cnvimass 5989 . . . . . . . . . . . . . . 15 ((♯ ↾ ω) “ 𝑥) ⊆ dom (♯ ↾ ω)
30 dmhashres 14055 . . . . . . . . . . . . . . 15 dom (♯ ↾ ω) = ω
3129, 30sseqtri 3957 . . . . . . . . . . . . . 14 ((♯ ↾ ω) “ 𝑥) ⊆ ω
32 onfin2 9014 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
33 inss2 4163 . . . . . . . . . . . . . . 15 (On ∩ Fin) ⊆ Fin
3432, 33eqsstri 3955 . . . . . . . . . . . . . 14 ω ⊆ Fin
3531, 34sstri 3930 . . . . . . . . . . . . 13 ((♯ ↾ ω) “ 𝑥) ⊆ Fin
36 simpr 485 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥))
3735, 36sselid 3919 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ Fin)
38 pwfi 8961 . . . . . . . . . . . 12 (𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin)
3937, 38sylib 217 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝒫 𝑤 ∈ Fin)
40 xpfi 9085 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ 𝒫 𝑤 ∈ Fin) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4128, 39, 40sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4241ralrimiva 3103 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
43 iunfi 9107 . . . . . . . . 9 ((((♯ ↾ ω) “ 𝑥) ∈ Fin ∧ ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
4427, 42, 43syl2anc 584 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
45 ficardom 9719 . . . . . . . 8 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4644, 45syl 17 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4746fvresd 6794 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
48 hashcard 14070 . . . . . . 7 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
4944, 48syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
50 xp1st 7863 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) ∈ {𝑤})
51 elsni 4578 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑤} → (1st𝑧) = 𝑤)
5250, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) = 𝑤)
5352rgen 3074 . . . . . . . . . 10 𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
5453rgenw 3076 . . . . . . . . 9 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
55 invdisj 5058 . . . . . . . . 9 (∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5654, 55mp1i 13 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5727, 41, 56hashiun 15534 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)))
58 sneq 4571 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → {𝑤} = {((♯ ↾ ω)‘𝑦)})
59 pweq 4549 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → 𝒫 𝑤 = 𝒫 ((♯ ↾ ω)‘𝑦))
6058, 59xpeq12d 5620 . . . . . . . . 9 (𝑤 = ((♯ ↾ ω)‘𝑦) → ({𝑤} × 𝒫 𝑤) = ({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦)))
6160fveq2d 6778 . . . . . . . 8 (𝑤 = ((♯ ↾ ω)‘𝑦) → (♯‘({𝑤} × 𝒫 𝑤)) = (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
62 elinel2 4130 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
63 f1of1 6715 . . . . . . . . . 10 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ01-1→ω)
6413, 63ax-mp 5 . . . . . . . . 9 (♯ ↾ ω):ℕ01-1→ω
65 elinel1 4129 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ 𝒫 ℕ0)
6665elpwid 4544 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
67 f1ores 6730 . . . . . . . . 9 (((♯ ↾ ω):ℕ01-1→ω ∧ 𝑥 ⊆ ℕ0) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
6864, 66, 67sylancr 587 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
69 fvres 6793 . . . . . . . . 9 (𝑦𝑥 → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
7069adantl 482 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
71 hashcl 14071 . . . . . . . . 9 (({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0)
72 nn0cn 12243 . . . . . . . . 9 ((♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0 → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7341, 71, 723syl 18 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7461, 62, 68, 70, 73fsumf1o 15435 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
75 snfi 8834 . . . . . . . . . 10 {((♯ ↾ ω)‘𝑦)} ∈ Fin
7666sselda 3921 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ ℕ0)
77 f1of 6716 . . . . . . . . . . . . . . 15 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ0⟶ω)
7813, 77ax-mp 5 . . . . . . . . . . . . . 14 (♯ ↾ ω):ℕ0⟶ω
7978ffvelrni 6960 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((♯ ↾ ω)‘𝑦) ∈ ω)
8076, 79syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ ω)
8134, 80sselid 3919 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ Fin)
82 pwfi 8961 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ Fin ↔ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
8381, 82sylib 217 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
84 hashxp 14149 . . . . . . . . . 10 (({((♯ ↾ ω)‘𝑦)} ∈ Fin ∧ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
8575, 83, 84sylancr 587 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
86 hashsng 14084 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ ω → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
8780, 86syl 17 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
88 hashpw 14151 . . . . . . . . . . . 12 (((♯ ↾ ω)‘𝑦) ∈ Fin → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
8981, 88syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
9080fvresd 6794 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = (♯‘((♯ ↾ ω)‘𝑦)))
91 f1ocnvfv2 7149 . . . . . . . . . . . . . 14 (((♯ ↾ ω):ω–1-1-onto→ℕ0𝑦 ∈ ℕ0) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
922, 76, 91sylancr 587 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9390, 92eqtr3d 2780 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9493oveq2d 7291 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑(♯‘((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
9589, 94eqtrd 2778 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑𝑦))
9687, 95oveq12d 7293 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))) = (1 · (2↑𝑦)))
97 2cn 12048 . . . . . . . . . . 11 2 ∈ ℂ
98 expcl 13800 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
9997, 76, 98sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑𝑦) ∈ ℂ)
10099mulid2d 10993 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (1 · (2↑𝑦)) = (2↑𝑦))
10185, 96, 1003eqtrd 2782 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
102101sumeq2dv 15415 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = Σ𝑦𝑥 (2↑𝑦))
10357, 74, 1023eqtrd 2782 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (2↑𝑦))
10447, 49, 1033eqtrd 2782 . . . . 5 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = Σ𝑦𝑥 (2↑𝑦))
105104mpteq2ia 5177 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
10646adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
10726adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
108 eqidd 2739 . . . . . . 7 (⊤ → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))
109 eqidd 2739 . . . . . . 7 (⊤ → (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))))
110 iuneq1 4940 . . . . . . . 8 (𝑧 = ((♯ ↾ ω) “ 𝑥) → 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
111110fveq2d 6778 . . . . . . 7 (𝑧 = ((♯ ↾ ω) “ 𝑥) → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
112107, 108, 109, 111fmptco 7001 . . . . . 6 (⊤ → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
113 f1of 6716 . . . . . . . 8 ((♯ ↾ ω):ω–1-1-onto→ℕ0 → (♯ ↾ ω):ω⟶ℕ0)
1142, 113mp1i 13 . . . . . . 7 (⊤ → (♯ ↾ ω):ω⟶ℕ0)
115114feqmptd 6837 . . . . . 6 (⊤ → (♯ ↾ ω) = (𝑦 ∈ ω ↦ ((♯ ↾ ω)‘𝑦)))
116 fveq2 6774 . . . . . 6 (𝑦 = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) → ((♯ ↾ ω)‘𝑦) = ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
117106, 112, 115, 116fmptco 7001 . . . . 5 (⊤ → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))))
118117mptru 1546 . . . 4 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
119 ackbijnn.1 . . . 4 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
120105, 118, 1193eqtr4i 2776 . . 3 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹
121 f1oeq1 6704 . . 3 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹 → (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
122120, 121ax-mp 5 . 2 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
12319, 122mpbi 229 1 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561   ciun 4924  Disj wdisj 5039  cmpt 5157   × cxp 5587  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  ccom 5593  Oncon0 6266  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  Fincfn 8733  cardccrd 9693  cc 10869  1c1 10872   · cmul 10876  2c2 12028  0cn0 12233  cexp 13782  chash 14044  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  bitsinv2  16150
  Copyright terms: Public domain W3C validator