MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbijnn Structured version   Visualization version   GIF version

Theorem ackbijnn 14767
Description: Translate the Ackermann bijection ackbij1 9262 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
ackbijnn.1 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
Assertion
Ref Expression
ackbijnn 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ackbijnn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgval2 13369 . . . 4 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21hashgf1o 12978 . . 3 (♯ ↾ ω):ω–1-1-onto→ℕ0
3 sneq 4326 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
4 pweq 4300 . . . . . . . . . 10 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
53, 4xpeq12d 5280 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑤} × 𝒫 𝑤) = ({𝑦} × 𝒫 𝑦))
65cbviunv 4693 . . . . . . . 8 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑧 ({𝑦} × 𝒫 𝑦)
7 iuneq1 4668 . . . . . . . 8 (𝑧 = 𝑥 𝑦𝑧 ({𝑦} × 𝒫 𝑦) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
86, 7syl5eq 2817 . . . . . . 7 (𝑧 = 𝑥 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
98fveq2d 6336 . . . . . 6 (𝑧 = 𝑥 → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109cbvmptv 4884 . . . . 5 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
1110ackbij1 9262 . . . 4 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω
12 f1ocnv 6290 . . . . . 6 ((♯ ↾ ω):ω–1-1-onto→ℕ0(♯ ↾ ω):ℕ01-1-onto→ω)
132, 12ax-mp 5 . . . . 5 (♯ ↾ ω):ℕ01-1-onto→ω
14 f1opwfi 8426 . . . . 5 ((♯ ↾ ω):ℕ01-1-onto→ω → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin))
1513, 14ax-mp 5 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)
16 f1oco 6300 . . . 4 (((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω ∧ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)) → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω)
1711, 15, 16mp2an 672 . . 3 ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω
18 f1oco 6300 . . 3 (((♯ ↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω) → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
192, 17, 18mp2an 672 . 2 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
20 inss2 3982 . . . . . . . . . 10 (𝒫 ω ∩ Fin) ⊆ Fin
21 f1of 6278 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin) → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2215, 21ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin)
23 eqid 2771 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))
2423fmpt 6523 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin) ↔ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2522, 24mpbir 221 . . . . . . . . . . 11 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin)
2625rspec 3080 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
2720, 26sseldi 3750 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) “ 𝑥) ∈ Fin)
28 snfi 8194 . . . . . . . . . . 11 {𝑤} ∈ Fin
29 cnvimass 5626 . . . . . . . . . . . . . . 15 ((♯ ↾ ω) “ 𝑥) ⊆ dom (♯ ↾ ω)
30 dmhashres 13333 . . . . . . . . . . . . . . 15 dom (♯ ↾ ω) = ω
3129, 30sseqtri 3786 . . . . . . . . . . . . . 14 ((♯ ↾ ω) “ 𝑥) ⊆ ω
32 onfin2 8308 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
33 inss2 3982 . . . . . . . . . . . . . . 15 (On ∩ Fin) ⊆ Fin
3432, 33eqsstri 3784 . . . . . . . . . . . . . 14 ω ⊆ Fin
3531, 34sstri 3761 . . . . . . . . . . . . 13 ((♯ ↾ ω) “ 𝑥) ⊆ Fin
36 simpr 471 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥))
3735, 36sseldi 3750 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝑤 ∈ Fin)
38 pwfi 8417 . . . . . . . . . . . 12 (𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin)
3937, 38sylib 208 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → 𝒫 𝑤 ∈ Fin)
40 xpfi 8387 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ 𝒫 𝑤 ∈ Fin) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4128, 39, 40sylancr 575 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4241ralrimiva 3115 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
43 iunfi 8410 . . . . . . . . 9 ((((♯ ↾ ω) “ 𝑥) ∈ Fin ∧ ∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
4427, 42, 43syl2anc 573 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
45 ficardom 8987 . . . . . . . 8 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4644, 45syl 17 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
47 fvres 6348 . . . . . . 7 ((card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
4846, 47syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
49 hashcard 13348 . . . . . . 7 ( 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
5044, 49syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
51 xp1st 7347 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) ∈ {𝑤})
52 elsni 4333 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑤} → (1st𝑧) = 𝑤)
5351, 52syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) = 𝑤)
5453rgen 3071 . . . . . . . . . 10 𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
5554rgenw 3073 . . . . . . . . 9 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
56 invdisj 4772 . . . . . . . . 9 (∀𝑤 ∈ ((♯ ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5755, 56mp1i 13 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Disj 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5827, 41, 57hashiun 14761 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)))
59 sneq 4326 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → {𝑤} = {((♯ ↾ ω)‘𝑦)})
60 pweq 4300 . . . . . . . . . 10 (𝑤 = ((♯ ↾ ω)‘𝑦) → 𝒫 𝑤 = 𝒫 ((♯ ↾ ω)‘𝑦))
6159, 60xpeq12d 5280 . . . . . . . . 9 (𝑤 = ((♯ ↾ ω)‘𝑦) → ({𝑤} × 𝒫 𝑤) = ({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦)))
6261fveq2d 6336 . . . . . . . 8 (𝑤 = ((♯ ↾ ω)‘𝑦) → (♯‘({𝑤} × 𝒫 𝑤)) = (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
63 inss2 3982 . . . . . . . . 9 (𝒫 ℕ0 ∩ Fin) ⊆ Fin
6463sseli 3748 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
65 f1of1 6277 . . . . . . . . . 10 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ01-1→ω)
6613, 65ax-mp 5 . . . . . . . . 9 (♯ ↾ ω):ℕ01-1→ω
67 inss1 3981 . . . . . . . . . . 11 (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0
6867sseli 3748 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ 𝒫 ℕ0)
6968elpwid 4309 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
70 f1ores 6292 . . . . . . . . 9 (((♯ ↾ ω):ℕ01-1→ω ∧ 𝑥 ⊆ ℕ0) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
7166, 69, 70sylancr 575 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω) ↾ 𝑥):𝑥1-1-onto→((♯ ↾ ω) “ 𝑥))
72 fvres 6348 . . . . . . . . 9 (𝑦𝑥 → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
7372adantl 467 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (((♯ ↾ ω) ↾ 𝑥)‘𝑦) = ((♯ ↾ ω)‘𝑦))
74 hashcl 13349 . . . . . . . . 9 (({𝑤} × 𝒫 𝑤) ∈ Fin → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0)
75 nn0cn 11504 . . . . . . . . 9 ((♯‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0 → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7641, 74, 753syl 18 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)) → (♯‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7762, 64, 71, 73, 76fsumf1o 14662 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑤 ∈ ((♯ ↾ ω) “ 𝑥)(♯‘({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))))
78 snfi 8194 . . . . . . . . . 10 {((♯ ↾ ω)‘𝑦)} ∈ Fin
7969sselda 3752 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ ℕ0)
80 f1of 6278 . . . . . . . . . . . . . . 15 ((♯ ↾ ω):ℕ01-1-onto→ω → (♯ ↾ ω):ℕ0⟶ω)
8113, 80ax-mp 5 . . . . . . . . . . . . . 14 (♯ ↾ ω):ℕ0⟶ω
8281ffvelrni 6501 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((♯ ↾ ω)‘𝑦) ∈ ω)
8379, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ ω)
8434, 83sseldi 3750 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘𝑦) ∈ Fin)
85 pwfi 8417 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ Fin ↔ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
8684, 85sylib 208 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin)
87 hashxp 13423 . . . . . . . . . 10 (({((♯ ↾ ω)‘𝑦)} ∈ Fin ∧ 𝒫 ((♯ ↾ ω)‘𝑦) ∈ Fin) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
8878, 86, 87sylancr 575 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))))
89 hashsng 13361 . . . . . . . . . . 11 (((♯ ↾ ω)‘𝑦) ∈ ω → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
9083, 89syl 17 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘{((♯ ↾ ω)‘𝑦)}) = 1)
91 hashpw 13425 . . . . . . . . . . . 12 (((♯ ↾ ω)‘𝑦) ∈ Fin → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
9284, 91syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑(♯‘((♯ ↾ ω)‘𝑦))))
93 fvres 6348 . . . . . . . . . . . . . 14 (((♯ ↾ ω)‘𝑦) ∈ ω → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = (♯‘((♯ ↾ ω)‘𝑦)))
9483, 93syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = (♯‘((♯ ↾ ω)‘𝑦)))
95 f1ocnvfv2 6676 . . . . . . . . . . . . . 14 (((♯ ↾ ω):ω–1-1-onto→ℕ0𝑦 ∈ ℕ0) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
962, 79, 95sylancr 575 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯ ↾ ω)‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9794, 96eqtr3d 2807 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘((♯ ↾ ω)‘𝑦)) = 𝑦)
9897oveq2d 6809 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑(♯‘((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
9992, 98eqtrd 2805 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘𝒫 ((♯ ↾ ω)‘𝑦)) = (2↑𝑦))
10090, 99oveq12d 6811 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((♯‘{((♯ ↾ ω)‘𝑦)}) · (♯‘𝒫 ((♯ ↾ ω)‘𝑦))) = (1 · (2↑𝑦)))
101 2cn 11293 . . . . . . . . . . 11 2 ∈ ℂ
102 expcl 13085 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
103101, 79, 102sylancr 575 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑𝑦) ∈ ℂ)
104103mulid2d 10260 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (1 · (2↑𝑦)) = (2↑𝑦))
10588, 100, 1043eqtrd 2809 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = (2↑𝑦))
106105sumeq2dv 14641 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑦𝑥 (♯‘({((♯ ↾ ω)‘𝑦)} × 𝒫 ((♯ ↾ ω)‘𝑦))) = Σ𝑦𝑥 (2↑𝑦))
10758, 77, 1063eqtrd 2809 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (♯‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (2↑𝑦))
10848, 50, 1073eqtrd 2809 . . . . 5 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = Σ𝑦𝑥 (2↑𝑦))
109108mpteq2ia 4874 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
11046adantl 467 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
11126adantl 467 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → ((♯ ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
112 eqidd 2772 . . . . . . 7 (⊤ → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))
113 eqidd 2772 . . . . . . 7 (⊤ → (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))))
114 iuneq1 4668 . . . . . . . 8 (𝑧 = ((♯ ↾ ω) “ 𝑥) → 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
115114fveq2d 6336 . . . . . . 7 (𝑧 = ((♯ ↾ ω) “ 𝑥) → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
116111, 112, 113, 115fmptco 6539 . . . . . 6 (⊤ → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
117 f1of 6278 . . . . . . . 8 ((♯ ↾ ω):ω–1-1-onto→ℕ0 → (♯ ↾ ω):ω⟶ℕ0)
1182, 117mp1i 13 . . . . . . 7 (⊤ → (♯ ↾ ω):ω⟶ℕ0)
119118feqmptd 6391 . . . . . 6 (⊤ → (♯ ↾ ω) = (𝑦 ∈ ω ↦ ((♯ ↾ ω)‘𝑦)))
120 fveq2 6332 . . . . . 6 (𝑦 = (card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) → ((♯ ↾ ω)‘𝑦) = ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
121110, 116, 119, 120fmptco 6539 . . . . 5 (⊤ → ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))))
122121trud 1641 . . . 4 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω)‘(card‘ 𝑤 ∈ ((♯ ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
123 ackbijnn.1 . . . 4 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
124109, 122, 1233eqtr4i 2803 . . 3 ((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹
125 f1oeq1 6268 . . 3 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))) = 𝐹 → (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
126124, 125ax-mp 5 . 2 (((♯ ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((♯ ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
12719, 126mpbi 220 1 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wtru 1632  wcel 2145  wral 3061  cin 3722  wss 3723  𝒫 cpw 4297  {csn 4316   ciun 4654  Disj wdisj 4754  cmpt 4863   × cxp 5247  ccnv 5248  dom cdm 5249  cres 5251  cima 5252  ccom 5253  Oncon0 5866  wf 6027  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  ωcom 7212  1st c1st 7313  Fincfn 8109  cardccrd 8961  cc 10136  1c1 10139   · cmul 10143  2c2 11272  0cn0 11494  cexp 13067  chash 13321  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by:  bitsinv2  15373
  Copyright terms: Public domain W3C validator