| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrprop0 | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| rusgrprop0 | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrprop 29541 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
| 2 | isrusgr0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | isrusgr0.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 4 | 2, 3 | rgrprop 29539 | . . . 4 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 6 | 3anass 1094 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 ‘cfv 6481 ℕ0*cxnn0 12454 Vtxcvtx 28974 USGraphcusgr 29127 VtxDegcvtxdg 29444 RegGraph crgr 29534 RegUSGraph crusgr 29535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6437 df-fv 6489 df-rgr 29536 df-rusgr 29537 |
| This theorem is referenced by: frusgrnn0 29550 cusgrm1rusgr 29561 rusgrpropnb 29562 frgrreg 30374 frgrregord013 30375 |
| Copyright terms: Public domain | W3C validator |