| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrprop0 | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| rusgrprop0 | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrprop 29497 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
| 2 | isrusgr0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | isrusgr0.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 4 | 2, 3 | rgrprop 29495 | . . . 4 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 6 | 3anass 1094 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 ℕ0*cxnn0 12522 Vtxcvtx 28930 USGraphcusgr 29083 VtxDegcvtxdg 29400 RegGraph crgr 29490 RegUSGraph crusgr 29491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-iota 6467 df-fv 6522 df-rgr 29492 df-rusgr 29493 |
| This theorem is referenced by: frusgrnn0 29506 cusgrm1rusgr 29517 rusgrpropnb 29518 frgrreg 30330 frgrregord013 30331 |
| Copyright terms: Public domain | W3C validator |