Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrprop0 | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
rusgrprop0 | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrprop 27451 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
2 | isrusgr0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | isrusgr0.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 2, 3 | rgrprop 27449 | . . . 4 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
5 | 4 | anim2i 619 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
6 | 3anass 1092 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | |
7 | 5, 6 | sylibr 237 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 class class class wbr 5032 ‘cfv 6335 ℕ0*cxnn0 12006 Vtxcvtx 26888 USGraphcusgr 27041 VtxDegcvtxdg 27354 RegGraph crgr 27444 RegUSGraph crusgr 27445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-xp 5530 df-iota 6294 df-fv 6343 df-rgr 27446 df-rusgr 27447 |
This theorem is referenced by: frusgrnn0 27460 cusgrm1rusgr 27471 rusgrpropnb 27472 frgrreg 28278 frgrregord013 28279 |
Copyright terms: Public domain | W3C validator |