MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprop0 Structured version   Visualization version   GIF version

Theorem rusgrprop0 29495
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
rusgrprop0 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem rusgrprop0
StepHypRef Expression
1 rusgrprop 29490 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
2 isrusgr0.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 isrusgr0.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
42, 3rgrprop 29488 . . . 4 (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
54anim2i 617 . . 3 ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
6 3anass 1094 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
75, 6sylibr 234 . 2 ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
81, 7syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  0*cxnn0 12515  Vtxcvtx 28923  USGraphcusgr 29076  VtxDegcvtxdg 29393   RegGraph crgr 29483   RegUSGraph crusgr 29484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-iota 6464  df-fv 6519  df-rgr 29485  df-rusgr 29486
This theorem is referenced by:  frusgrnn0  29499  cusgrm1rusgr  29510  rusgrpropnb  29511  frgrreg  30323  frgrregord013  30324
  Copyright terms: Public domain W3C validator