![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrprop0 | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
rusgrprop0 | ⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrprop 27031 | . 2 ⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾)) | |
2 | isrusgr0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | isrusgr0.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 2, 3 | rgrprop 27029 | . . . 4 ⊢ (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
5 | 4 | anim2i 616 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾) → (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
6 | 3anass 1088 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) ↔ (𝐺 ∈ USGraph ∧ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | |
7 | 5, 6 | sylibr 235 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∀wral 3107 class class class wbr 4968 ‘cfv 6232 ℕ0*cxnn0 11821 Vtxcvtx 26468 USGraphcusgr 26621 VtxDegcvtxdg 26934 RegGraphcrgr 27024 RegUSGraphcrusgr 27025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-xp 5456 df-iota 6196 df-fv 6240 df-rgr 27026 df-rusgr 27027 |
This theorem is referenced by: frusgrnn0 27040 cusgrm1rusgr 27051 rusgrpropnb 27052 frgrreg 27861 frgrregord013 27862 |
Copyright terms: Public domain | W3C validator |