| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | issrg.g | . . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) | 
| 2 | 1 | eleq1i 2832 | . . . . 5
⊢ (𝐺 ∈ Mnd ↔
(mulGrp‘𝑅) ∈
Mnd) | 
| 3 | 2 | bicomi 224 | . . . 4
⊢
((mulGrp‘𝑅)
∈ Mnd ↔ 𝐺 ∈
Mnd) | 
| 4 |  | issrg.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑅) | 
| 5 | 4 | fvexi 6920 | . . . . 5
⊢ 𝐵 ∈ V | 
| 6 |  | issrg.p | . . . . . 6
⊢  + =
(+g‘𝑅) | 
| 7 | 6 | fvexi 6920 | . . . . 5
⊢  + ∈
V | 
| 8 |  | issrg.t | . . . . . . . 8
⊢  · =
(.r‘𝑅) | 
| 9 | 8 | fvexi 6920 | . . . . . . 7
⊢  · ∈
V | 
| 10 | 9 | a1i 11 | . . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → · ∈
V) | 
| 11 |  | issrg.0 | . . . . . . . . 9
⊢  0 =
(0g‘𝑅) | 
| 12 | 11 | fvexi 6920 | . . . . . . . 8
⊢  0 ∈
V | 
| 13 | 12 | a1i 11 | . . . . . . 7
⊢ (((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈
V) | 
| 14 |  | simplll 775 | . . . . . . . 8
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵) | 
| 15 |  | simplr 769 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · ) | 
| 16 |  | eqidd 2738 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥) | 
| 17 |  | simpllr 776 | . . . . . . . . . . . . . . 15
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + ) | 
| 18 | 17 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧)) | 
| 19 | 15, 16, 18 | oveq123d 7452 | . . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧))) | 
| 20 | 15 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦)) | 
| 21 | 15 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧)) | 
| 22 | 17, 20, 21 | oveq123d 7452 | . . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 23 | 19, 22 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))) | 
| 24 | 17 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) | 
| 25 |  | eqidd 2738 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧) | 
| 26 | 15, 24, 25 | oveq123d 7452 | . . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧)) | 
| 27 | 15 | oveqd 7448 | . . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧)) | 
| 28 | 17, 21, 27 | oveq123d 7452 | . . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | 
| 29 | 26, 28 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) | 
| 30 | 23, 29 | anbi12d 632 | . . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | 
| 31 | 14, 30 | raleqbidv 3346 | . . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | 
| 32 | 14, 31 | raleqbidv 3346 | . . . . . . . . 9
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | 
| 33 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 ) | 
| 34 | 15, 33, 16 | oveq123d 7452 | . . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥)) | 
| 35 | 34, 33 | eqeq12d 2753 | . . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 )) | 
| 36 | 15, 16, 33 | oveq123d 7452 | . . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 )) | 
| 37 | 36, 33 | eqeq12d 2753 | . . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 )) | 
| 38 | 35, 37 | anbi12d 632 | . . . . . . . . 9
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) | 
| 39 | 32, 38 | anbi12d 632 | . . . . . . . 8
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 40 | 14, 39 | raleqbidv 3346 | . . . . . . 7
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 41 | 13, 40 | sbcied 3832 | . . . . . 6
⊢ (((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ([
0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 42 | 10, 41 | sbcied 3832 | . . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → ([ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 43 | 5, 7, 42 | sbc2ie 3866 | . . . 4
⊢
([𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) | 
| 44 | 3, 43 | anbi12i 628 | . . 3
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ [𝐵
/ 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | 
| 45 | 44 | anbi2i 623 | . 2
⊢ ((𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) | 
| 46 |  | fveq2 6906 | . . . . 5
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | 
| 47 | 46 | eleq1d 2826 | . . . 4
⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)) | 
| 48 |  | fveq2 6906 | . . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | 
| 49 | 48, 4 | eqtr4di 2795 | . . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) | 
| 50 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) | 
| 51 | 50, 6 | eqtr4di 2795 | . . . . . 6
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) | 
| 52 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | 
| 53 | 52, 8 | eqtr4di 2795 | . . . . . . 7
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) | 
| 54 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | 
| 55 | 54, 11 | eqtr4di 2795 | . . . . . . . 8
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) | 
| 56 | 55 | sbceq1d 3793 | . . . . . . 7
⊢ (𝑟 = 𝑅 → ([(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) | 
| 57 | 53, 56 | sbceqbid 3795 | . . . . . 6
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) | 
| 58 | 51, 57 | sbceqbid 3795 | . . . . 5
⊢ (𝑟 = 𝑅 → ([(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) | 
| 59 | 49, 58 | sbceqbid 3795 | . . . 4
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) | 
| 60 | 47, 59 | anbi12d 632 | . . 3
⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) | 
| 61 |  | df-srg 20184 | . . 3
⊢ SRing =
{𝑟 ∈ CMnd ∣
((mulGrp‘𝑟) ∈
Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} | 
| 62 | 60, 61 | elrab2 3695 | . 2
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) | 
| 63 |  | 3anass 1095 | . 2
⊢ ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) | 
| 64 | 45, 62, 63 | 3bitr4i 303 | 1
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |