MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrg Structured version   Visualization version   GIF version

Theorem issrg 18868
Description: The predicate "is a semiring." (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
issrg.b 𝐵 = (Base‘𝑅)
issrg.g 𝐺 = (mulGrp‘𝑅)
issrg.p + = (+g𝑅)
issrg.t · = (.r𝑅)
issrg.0 0 = (0g𝑅)
Assertion
Ref Expression
issrg (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem issrg
Dummy variables 𝑛 𝑏 𝑝 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issrg.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
21eleq1i 2897 . . . . 5 (𝐺 ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)
32bicomi 216 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ 𝐺 ∈ Mnd)
4 issrg.b . . . . . 6 𝐵 = (Base‘𝑅)
54fvexi 6451 . . . . 5 𝐵 ∈ V
6 issrg.p . . . . . 6 + = (+g𝑅)
76fvexi 6451 . . . . 5 + ∈ V
8 issrg.t . . . . . . . 8 · = (.r𝑅)
98fvexi 6451 . . . . . . 7 · ∈ V
109a1i 11 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → · ∈ V)
11 issrg.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6451 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈ V)
14 simplll 791 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵)
15 simplr 785 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · )
16 eqidd 2826 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥)
17 simpllr 793 . . . . . . . . . . . . . . 15 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + )
1817oveqd 6927 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
1915, 16, 18oveq123d 6931 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧)))
2015oveqd 6927 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
2115oveqd 6927 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
2217, 20, 21oveq123d 6931 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2319, 22eqeq12d 2840 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))))
2417oveqd 6927 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
25 eqidd 2826 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧)
2615, 24, 25oveq123d 6931 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧))
2715oveqd 6927 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
2817, 21, 27oveq123d 6931 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2926, 28eqeq12d 2840 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
3023, 29anbi12d 624 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3114, 30raleqbidv 3364 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3214, 31raleqbidv 3364 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
33 simpr 479 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 )
3415, 33, 16oveq123d 6931 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥))
3534, 33eqeq12d 2840 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 ))
3615, 16, 33oveq123d 6931 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 ))
3736, 33eqeq12d 2840 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 ))
3835, 37anbi12d 624 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
3932, 38anbi12d 624 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4014, 39raleqbidv 3364 . . . . . . 7 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4113, 40sbcied 3699 . . . . . 6 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → ([ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4210, 41sbcied 3699 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → ([ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
435, 7, 42sbc2ie 3730 . . . 4 ([𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
443, 43anbi12i 620 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4544anbi2i 616 . 2 ((𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
46 fveq2 6437 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4746eleq1d 2891 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd))
48 fveq2 6437 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4948, 4syl6eqr 2879 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
50 fveq2 6437 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5150, 6syl6eqr 2879 . . . . . 6 (𝑟 = 𝑅 → (+g𝑟) = + )
52 fveq2 6437 . . . . . . . 8 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5352, 8syl6eqr 2879 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = · )
54 fveq2 6437 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5554, 11syl6eqr 2879 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
5655sbceq1d 3667 . . . . . . 7 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5753, 56sbceqbid 3669 . . . . . 6 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5851, 57sbceqbid 3669 . . . . 5 (𝑟 = 𝑅 → ([(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5949, 58sbceqbid 3669 . . . 4 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6047, 59anbi12d 624 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
61 df-srg 18867 . . 3 SRing = {𝑟 ∈ CMnd ∣ ((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
6260, 61elrab2 3589 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
63 3anass 1120 . 2 ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
6445, 62, 633bitr4i 295 1 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  [wsbc 3662  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  0gc0g 16460  Mndcmnd 17654  CMndccmn 18553  mulGrpcmgp 18850  SRingcsrg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-nul 5015
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-iota 6090  df-fv 6135  df-ov 6913  df-srg 18867
This theorem is referenced by:  srgcmn  18869  srgmgp  18871  srgi  18872  srgrz  18887  srglz  18888  ringsrg  18950  nn0srg  20183  rge0srg  20184
  Copyright terms: Public domain W3C validator