MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrg Structured version   Visualization version   GIF version

Theorem issrg 20185
Description: The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
issrg.b 𝐵 = (Base‘𝑅)
issrg.g 𝐺 = (mulGrp‘𝑅)
issrg.p + = (+g𝑅)
issrg.t · = (.r𝑅)
issrg.0 0 = (0g𝑅)
Assertion
Ref Expression
issrg (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem issrg
Dummy variables 𝑛 𝑏 𝑝 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issrg.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
21eleq1i 2832 . . . . 5 (𝐺 ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)
32bicomi 224 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ 𝐺 ∈ Mnd)
4 issrg.b . . . . . 6 𝐵 = (Base‘𝑅)
54fvexi 6920 . . . . 5 𝐵 ∈ V
6 issrg.p . . . . . 6 + = (+g𝑅)
76fvexi 6920 . . . . 5 + ∈ V
8 issrg.t . . . . . . . 8 · = (.r𝑅)
98fvexi 6920 . . . . . . 7 · ∈ V
109a1i 11 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → · ∈ V)
11 issrg.0 . . . . . . . . 9 0 = (0g𝑅)
1211fvexi 6920 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈ V)
14 simplll 775 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵)
15 simplr 769 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · )
16 eqidd 2738 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥)
17 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + )
1817oveqd 7448 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
1915, 16, 18oveq123d 7452 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧)))
2015oveqd 7448 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
2115oveqd 7448 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
2217, 20, 21oveq123d 7452 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2319, 22eqeq12d 2753 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))))
2417oveqd 7448 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
25 eqidd 2738 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧)
2615, 24, 25oveq123d 7452 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧))
2715oveqd 7448 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
2817, 21, 27oveq123d 7452 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2926, 28eqeq12d 2753 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
3023, 29anbi12d 632 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3114, 30raleqbidv 3346 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3214, 31raleqbidv 3346 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
33 simpr 484 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 )
3415, 33, 16oveq123d 7452 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥))
3534, 33eqeq12d 2753 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 ))
3615, 16, 33oveq123d 7452 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 ))
3736, 33eqeq12d 2753 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 ))
3835, 37anbi12d 632 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
3932, 38anbi12d 632 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4014, 39raleqbidv 3346 . . . . . . 7 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4113, 40sbcied 3832 . . . . . 6 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → ([ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4210, 41sbcied 3832 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → ([ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
435, 7, 42sbc2ie 3866 . . . 4 ([𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
443, 43anbi12i 628 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4544anbi2i 623 . 2 ((𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
46 fveq2 6906 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
4746eleq1d 2826 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd))
48 fveq2 6906 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4948, 4eqtr4di 2795 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
50 fveq2 6906 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5150, 6eqtr4di 2795 . . . . . 6 (𝑟 = 𝑅 → (+g𝑟) = + )
52 fveq2 6906 . . . . . . . 8 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5352, 8eqtr4di 2795 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = · )
54 fveq2 6906 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5554, 11eqtr4di 2795 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
5655sbceq1d 3793 . . . . . . 7 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5753, 56sbceqbid 3795 . . . . . 6 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5851, 57sbceqbid 3795 . . . . 5 (𝑟 = 𝑅 → ([(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
5949, 58sbceqbid 3795 . . . 4 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6047, 59anbi12d 632 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
61 df-srg 20184 . . 3 SRing = {𝑟 ∈ CMnd ∣ ((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
6260, 61elrab2 3695 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
63 3anass 1095 . 2 ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
6445, 62, 633bitr4i 303 1 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  [wsbc 3788  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Mndcmnd 18747  CMndccmn 19798  mulGrpcmgp 20137  SRingcsrg 20183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-srg 20184
This theorem is referenced by:  srgcmn  20186  srgmgp  20188  srgdilem  20189  srgrz  20204  srglz  20205  ringsrg  20294  nn0srg  21455  rge0srg  21456
  Copyright terms: Public domain W3C validator