Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem2 Structured version   Visualization version   GIF version

Theorem expdiophlem2 43142
Description: Lemma for expdioph 43143. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem expdiophlem2
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8781 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 3nn 12213 . . . . . 6 3 ∈ ℕ
32jm2.27dlem3 43131 . . . . 5 3 ∈ (1...3)
4 ffvelcdm 7022 . . . . 5 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
51, 3, 4sylancl 586 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘3) ∈ ℕ0)
6 expdiophlem1 43141 . . . 4 ((𝑎‘3) ∈ ℕ0 → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
75, 6syl 17 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
87rabbiia 3400 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))}
9 3nn0 12408 . . 3 3 ∈ ℕ0
10 fvex 6843 . . . . . . . . 9 (𝑒‘5) ∈ V
11 fvex 6843 . . . . . . . . 9 (𝑒‘6) ∈ V
12 eqeq1 2737 . . . . . . . . . . . . . 14 (𝑐 = (𝑒‘5) → (𝑐 = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))))
1312anbi2d 630 . . . . . . . . . . . . 13 (𝑐 = (𝑒‘5) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
1413adantr 480 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
15 eqeq1 2737 . . . . . . . . . . . . . . 15 (𝑑 = (𝑒‘6) → (𝑑 = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))))
1615anbi2d 630 . . . . . . . . . . . . . 14 (𝑑 = (𝑒‘6) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
1716adantl 481 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
18 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → 𝑑 = (𝑒‘6))
19 oveq2 7362 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑒‘5) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2118, 20oveq12d 7372 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) = ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))))
2221oveq1d 7369 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) = (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))
2322breq2d 5107 . . . . . . . . . . . . . 14 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) ↔ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))
2423anbi2d 630 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))) ↔ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))
2517, 24anbi12d 632 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))
2614, 25anbi12d 632 . . . . . . . . . . 11 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))
2726anbi2d 630 . . . . . . . . . 10 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
2827anbi2d 630 . . . . . . . . 9 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))))
2910, 11, 28sbc2ie 3813 . . . . . . . 8 ([(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3029sbcbii 3794 . . . . . . 7 ([(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3130sbcbii 3794 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
32 vex 3441 . . . . . . . 8 𝑒 ∈ V
3332resex 5984 . . . . . . 7 (𝑒 ↾ (1...3)) ∈ V
34 fvex 6843 . . . . . . 7 (𝑒‘4) ∈ V
35 df-2 12197 . . . . . . . . . . . . . 14 2 = (1 + 1)
36 df-3 12198 . . . . . . . . . . . . . . 15 3 = (2 + 1)
37 ssid 3953 . . . . . . . . . . . . . . 15 (1...3) ⊆ (1...3)
3836, 37jm2.27dlem5 43133 . . . . . . . . . . . . . 14 (1...2) ⊆ (1...3)
3935, 38jm2.27dlem5 43133 . . . . . . . . . . . . 13 (1...1) ⊆ (1...3)
40 1nn 12145 . . . . . . . . . . . . . 14 1 ∈ ℕ
4140jm2.27dlem3 43131 . . . . . . . . . . . . 13 1 ∈ (1...1)
4239, 41sselii 3927 . . . . . . . . . . . 12 1 ∈ (1...3)
4342jm2.27dlem1 43129 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘1) = (𝑒‘1))
4443eleq1d 2818 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
45 2nn 12207 . . . . . . . . . . . . . 14 2 ∈ ℕ
4645jm2.27dlem3 43131 . . . . . . . . . . . . 13 2 ∈ (1...2)
4746, 36, 45jm2.27dlem2 43130 . . . . . . . . . . . 12 2 ∈ (1...3)
4847jm2.27dlem1 43129 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘2) = (𝑒‘2))
4948eleq1d 2818 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) ∈ ℕ ↔ (𝑒‘2) ∈ ℕ))
5044, 49anbi12d 632 . . . . . . . . 9 (𝑎 = (𝑒 ↾ (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5150adantr 480 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5244adantr 480 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
53 id 22 . . . . . . . . . . 11 (𝑏 = (𝑒‘4) → 𝑏 = (𝑒‘4))
5448oveq1d 7369 . . . . . . . . . . . 12 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) + 1) = ((𝑒‘2) + 1))
5543, 54oveq12d 7372 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) Yrm ((𝑎‘2) + 1)) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
5653, 55eqeqan12rd 2748 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1)) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
5752, 56anbi12d 632 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
58 eleq1 2821 . . . . . . . . . . . 12 (𝑏 = (𝑒‘4) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
5958adantl 481 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
6053, 48oveqan12rd 7374 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
6160eqeq2d 2744 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘5) = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
6259, 61anbi12d 632 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
6353, 48oveqan12rd 7374 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
6463eqeq2d 2744 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
6559, 64anbi12d 632 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
663jm2.27dlem1 43129 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘3) = (𝑒‘3))
6766adantr 480 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘3) = (𝑒‘3))
68 oveq2 7362 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒‘4) → (2 · 𝑏) = (2 · (𝑒‘4)))
6968, 43oveqan12rd 7374 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((2 · 𝑏) · (𝑎‘1)) = ((2 · (𝑒‘4)) · (𝑒‘1)))
7043oveq1d 7369 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7170adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7269, 71oveq12d 7372 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) = (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)))
7372oveq1d 7369 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) = ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1))
7467, 73breq12d 5108 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ↔ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)))
75 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → 𝑏 = (𝑒‘4))
7643adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘1) = (𝑒‘1))
7775, 76oveq12d 7372 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 − (𝑎‘1)) = ((𝑒‘4) − (𝑒‘1)))
7877oveq1d 7369 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 − (𝑎‘1)) · (𝑒‘5)) = (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))
7978oveq2d 7370 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) = ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))))
8079, 67oveq12d 7372 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) = (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))
8173, 80breq12d 5108 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) ↔ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))
8274, 81anbi12d 632 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))) ↔ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))
8365, 82anbi12d 632 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))
8462, 83anbi12d 632 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))
8557, 84anbi12d 632 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8651, 85anbi12d 632 . . . . . . 7 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))))
8733, 34, 86sbc2ie 3813 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8831, 87bitri 275 . . . . 5 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8988rabbii 3401 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))}
90 6nn0 12411 . . . . . . 7 6 ∈ ℕ0
91 2z 12512 . . . . . . 7 2 ∈ ℤ
92 ovex 7387 . . . . . . . 8 (1...6) ∈ V
93 df-4 12199 . . . . . . . . . . . 12 4 = (3 + 1)
94 df-5 12200 . . . . . . . . . . . . 13 5 = (4 + 1)
95 df-6 12201 . . . . . . . . . . . . . 14 6 = (5 + 1)
96 ssid 3953 . . . . . . . . . . . . . 14 (1...6) ⊆ (1...6)
9795, 96jm2.27dlem5 43133 . . . . . . . . . . . . 13 (1...5) ⊆ (1...6)
9894, 97jm2.27dlem5 43133 . . . . . . . . . . . 12 (1...4) ⊆ (1...6)
9993, 98jm2.27dlem5 43133 . . . . . . . . . . 11 (1...3) ⊆ (1...6)
10036, 99jm2.27dlem5 43133 . . . . . . . . . 10 (1...2) ⊆ (1...6)
10135, 100jm2.27dlem5 43133 . . . . . . . . 9 (1...1) ⊆ (1...6)
102101, 41sselii 3927 . . . . . . . 8 1 ∈ (1...6)
103 mzpproj 42857 . . . . . . . 8 (((1...6) ∈ V ∧ 1 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)))
10492, 102, 103mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))
105 eluzrabdioph 42926 . . . . . . 7 ((6 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6))
10690, 91, 104, 105mp3an 1463 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6)
107100, 46sselii 3927 . . . . . . . 8 2 ∈ (1...6)
108 mzpproj 42857 . . . . . . . 8 (((1...6) ∈ V ∧ 2 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6)))
10992, 107, 108mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))
110 elnnrabdioph 42927 . . . . . . 7 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6))
11190, 109, 110mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)
112 anrabdioph 42900 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6))
113106, 111, 112mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6)
114 elmapi 8781 . . . . . . . . . . 11 (𝑒 ∈ (ℕ0m (1...6)) → 𝑒:(1...6)⟶ℕ0)
115 ffvelcdm 7022 . . . . . . . . . . 11 ((𝑒:(1...6)⟶ℕ0 ∧ 2 ∈ (1...6)) → (𝑒‘2) ∈ ℕ0)
116114, 107, 115sylancl 586 . . . . . . . . . 10 (𝑒 ∈ (ℕ0m (1...6)) → (𝑒‘2) ∈ ℕ0)
117 peano2nn0 12430 . . . . . . . . . 10 ((𝑒‘2) ∈ ℕ0 → ((𝑒‘2) + 1) ∈ ℕ0)
118 oveq2 7362 . . . . . . . . . . . . 13 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘1) Yrm 𝑏) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
119118eqeq2d 2744 . . . . . . . . . . . 12 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
120119anbi2d 630 . . . . . . . . . . 11 (𝑏 = ((𝑒‘2) + 1) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
121120ceqsrexv 3606 . . . . . . . . . 10 (((𝑒‘2) + 1) ∈ ℕ0 → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
122116, 117, 1213syl 18 . . . . . . . . 9 (𝑒 ∈ (ℕ0m (1...6)) → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
123122bicomd 223 . . . . . . . 8 (𝑒 ∈ (ℕ0m (1...6)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))))
124123rabbiia 3400 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))}
125 vex 3441 . . . . . . . . . . . 12 𝑎 ∈ V
126125resex 5984 . . . . . . . . . . 11 (𝑎 ↾ (1...6)) ∈ V
127 fvex 6843 . . . . . . . . . . 11 (𝑎‘7) ∈ V
128 id 22 . . . . . . . . . . . . 13 (𝑏 = (𝑎‘7) → 𝑏 = (𝑎‘7))
129107jm2.27dlem1 43129 . . . . . . . . . . . . . 14 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘2) = (𝑎‘2))
130129oveq1d 7369 . . . . . . . . . . . . 13 (𝑒 = (𝑎 ↾ (1...6)) → ((𝑒‘2) + 1) = ((𝑎‘2) + 1))
131128, 130eqeqan12rd 2748 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑏 = ((𝑒‘2) + 1) ↔ (𝑎‘7) = ((𝑎‘2) + 1)))
132102jm2.27dlem1 43129 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘1) = (𝑎‘1))
133132adantr 480 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘1) = (𝑎‘1))
134133eleq1d 2818 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
135 4nn 12217 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
136135jm2.27dlem3 43131 . . . . . . . . . . . . . . . . 17 4 ∈ (1...4)
13798, 136sselii 3927 . . . . . . . . . . . . . . . 16 4 ∈ (1...6)
138137jm2.27dlem1 43129 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘4) = (𝑎‘4))
139138adantr 480 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘4) = (𝑎‘4))
140132, 128oveqan12d 7373 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) Yrm 𝑏) = ((𝑎‘1) Yrm (𝑎‘7)))
141139, 140eqeq12d 2749 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
142134, 141anbi12d 632 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
143131, 142anbi12d 632 . . . . . . . . . . 11 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))))
144126, 127, 143sbc2ie 3813 . . . . . . . . . 10 ([(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
145144rabbii 3401 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} = {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))}
146 7nn0 12412 . . . . . . . . . . 11 7 ∈ ℕ0
147 ovex 7387 . . . . . . . . . . . 12 (1...7) ∈ V
148 7nn 12226 . . . . . . . . . . . . 13 7 ∈ ℕ
149148jm2.27dlem3 43131 . . . . . . . . . . . 12 7 ∈ (1...7)
150 mzpproj 42857 . . . . . . . . . . . 12 (((1...7) ∈ V ∧ 7 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)))
151147, 149, 150mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7))
152 df-7 12202 . . . . . . . . . . . . . 14 7 = (6 + 1)
153 6nn 12223 . . . . . . . . . . . . . 14 6 ∈ ℕ
154107, 152, 153jm2.27dlem2 43130 . . . . . . . . . . . . 13 2 ∈ (1...7)
155 mzpproj 42857 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 2 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)))
156147, 154, 155mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7))
157 1z 12510 . . . . . . . . . . . . 13 1 ∈ ℤ
158 mzpconstmpt 42860 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7)))
159147, 157, 158mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))
160 mzpaddmpt 42861 . . . . . . . . . . . 12 (((𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7)))
161156, 159, 160mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))
162 eqrabdioph 42897 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))) → {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7))
163146, 151, 161, 162mp3an 1463 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7)
164 rmydioph 43134 . . . . . . . . . . 11 {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
165 simp1 1136 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘1) = (𝑎‘1))
166165eleq1d 2818 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
167 simp3 1138 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘3) = (𝑎‘4))
168 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘2) = (𝑎‘7))
169165, 168oveq12d 7372 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑎‘1) Yrm (𝑎‘7)))
170167, 169eqeq12d 2749 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
171166, 170anbi12d 632 . . . . . . . . . . . 12 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
172102, 152, 153jm2.27dlem2 43130 . . . . . . . . . . . 12 1 ∈ (1...7)
173137, 152, 153jm2.27dlem2 43130 . . . . . . . . . . . 12 4 ∈ (1...7)
174171, 172, 149, 173rabren3dioph 42935 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7))
175146, 164, 174mp2an 692 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)
176 anrabdioph 42900 . . . . . . . . . 10 (({𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7) ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7))
177163, 175, 176mp2an 692 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7)
178145, 177eqeltri 2829 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)
179152rexfrabdioph 42915 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6))
18090, 178, 179mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6)
181124, 180eqeltri 2829 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6)
182 rmydioph 43134 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
183 simp1 1136 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘1) = (𝑒‘4))
184183eleq1d 2818 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
185 simp3 1138 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘3) = (𝑒‘5))
186 simp2 1137 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘2) = (𝑒‘2))
187183, 186oveq12d 7372 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
188185, 187eqeq12d 2749 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
189184, 188anbi12d 632 . . . . . . . . 9 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
190 5nn 12220 . . . . . . . . . . 11 5 ∈ ℕ
191190jm2.27dlem3 43131 . . . . . . . . . 10 5 ∈ (1...5)
192191, 95, 190jm2.27dlem2 43130 . . . . . . . . 9 5 ∈ (1...6)
193189, 137, 107, 192rabren3dioph 42935 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6))
19490, 182, 193mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6)
195 rmxdioph 43136 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
196 simp1 1136 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘1) = (𝑒‘4))
197196eleq1d 2818 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
198 simp3 1138 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘3) = (𝑒‘6))
199 simp2 1137 . . . . . . . . . . . . 13 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘2) = (𝑒‘2))
200196, 199oveq12d 7372 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
201198, 200eqeq12d 2749 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
202197, 201anbi12d 632 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
203153jm2.27dlem3 43131 . . . . . . . . . 10 6 ∈ (1...6)
204202, 137, 107, 203rabren3dioph 42935 . . . . . . . . 9 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6))
20590, 195, 204mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6)
20699, 3sselii 3927 . . . . . . . . . . 11 3 ∈ (1...6)
207 mzpproj 42857 . . . . . . . . . . 11 (((1...6) ∈ V ∧ 3 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)))
20892, 206, 207mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))
209 mzpconstmpt 42860 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 2 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)))
21092, 91, 209mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6))
211 mzpproj 42857 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 4 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)))
21292, 137, 211mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))
213 mzpmulmpt 42862 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)))
214210, 212, 213mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6))
215 mzpmulmpt 42862 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)))
216214, 104, 215mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6))
217 2nn0 12407 . . . . . . . . . . . . 13 2 ∈ ℕ0
218 mzpexpmpt 42865 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)) ∧ 2 ∈ ℕ0) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6)))
219104, 217, 218mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))
220 mzpsubmpt 42863 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)))
221216, 219, 220mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6))
222 mzpconstmpt 42860 . . . . . . . . . . . 12 (((1...6) ∈ V ∧ 1 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6)))
22392, 157, 222mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))
224 mzpsubmpt 42863 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)))
225221, 223, 224mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))
226 ltrabdioph 42928 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6))
22790, 208, 225, 226mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6)
228 mzpproj 42857 . . . . . . . . . . . . 13 (((1...6) ∈ V ∧ 6 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)))
22992, 203, 228mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6))
230 mzpsubmpt 42863 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)))
231212, 104, 230mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6))
232 mzpproj 42857 . . . . . . . . . . . . . 14 (((1...6) ∈ V ∧ 5 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6)))
23392, 192, 232mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))
234 mzpmulmpt 42862 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6)))
235231, 233, 234mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))
236 mzpsubmpt 42863 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)))
237229, 235, 236mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6))
238 mzpsubmpt 42863 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6)))
239237, 208, 238mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))
240 dvdsrabdioph 42930 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6))
24190, 225, 239, 240mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)
242 anrabdioph 42900 . . . . . . . . 9 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6))
243227, 241, 242mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)
244 anrabdioph 42900 . . . . . . . 8 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6))
245205, 243, 244mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)
246 anrabdioph 42900 . . . . . . 7 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6))
247194, 245, 246mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)
248 anrabdioph 42900 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6))
249181, 247, 248mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)
250 anrabdioph 42900 . . . . 5 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6))
251113, 249, 250mp2an 692 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6)
25289, 251eqeltri 2829 . . 3 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)
25393, 94, 953rexfrabdioph 42917 . . 3 ((3 ∈ ℕ0 ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3))
2549, 252, 253mp2an 692 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3)
2558, 254eqeltri 2829 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  [wsbc 3737   class class class wbr 5095  cmpt 5176  cres 5623  wf 6484  cfv 6488  (class class class)co 7354  m cmap 8758  1c1 11016   + caddc 11018   · cmul 11020   < clt 11155  cmin 11353  cn 12134  2c2 12189  3c3 12190  4c4 12191  5c5 12192  6c6 12193  7c7 12194  0cn0 12390  cz 12477  cuz 12740  ...cfz 13411  cexp 13972  cdvds 16167  mzPolycmzp 42842  Diophcdioph 42875   Xrm crmx 43020   Yrm crmy 43021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-dju 9803  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-dvds 16168  df-gcd 16410  df-prm 16587  df-numer 16650  df-denom 16651  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-mzpcl 42843  df-mzp 42844  df-dioph 42876  df-squarenn 42961  df-pell1qr 42962  df-pell14qr 42963  df-pell1234qr 42964  df-pellfund 42965  df-rmx 43022  df-rmy 43023
This theorem is referenced by:  expdioph  43143
  Copyright terms: Public domain W3C validator