Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem2 Structured version   Visualization version   GIF version

Theorem expdiophlem2 40547
Description: Lemma for expdioph 40548. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem expdiophlem2
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8530 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 3nn 11909 . . . . . 6 3 ∈ ℕ
32jm2.27dlem3 40536 . . . . 5 3 ∈ (1...3)
4 ffvelrn 6902 . . . . 5 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
51, 3, 4sylancl 589 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘3) ∈ ℕ0)
6 expdiophlem1 40546 . . . 4 ((𝑎‘3) ∈ ℕ0 → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
75, 6syl 17 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
87rabbiia 3382 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))}
9 3nn0 12108 . . 3 3 ∈ ℕ0
10 fvex 6730 . . . . . . . . 9 (𝑒‘5) ∈ V
11 fvex 6730 . . . . . . . . 9 (𝑒‘6) ∈ V
12 eqeq1 2741 . . . . . . . . . . . . . 14 (𝑐 = (𝑒‘5) → (𝑐 = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))))
1312anbi2d 632 . . . . . . . . . . . . 13 (𝑐 = (𝑒‘5) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
1413adantr 484 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
15 eqeq1 2741 . . . . . . . . . . . . . . 15 (𝑑 = (𝑒‘6) → (𝑑 = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))))
1615anbi2d 632 . . . . . . . . . . . . . 14 (𝑑 = (𝑒‘6) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
1716adantl 485 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
18 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → 𝑑 = (𝑒‘6))
19 oveq2 7221 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑒‘5) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2019adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2118, 20oveq12d 7231 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) = ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))))
2221oveq1d 7228 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) = (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))
2322breq2d 5065 . . . . . . . . . . . . . 14 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) ↔ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))
2423anbi2d 632 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))) ↔ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))
2517, 24anbi12d 634 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))
2614, 25anbi12d 634 . . . . . . . . . . 11 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))
2726anbi2d 632 . . . . . . . . . 10 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
2827anbi2d 632 . . . . . . . . 9 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))))
2910, 11, 28sbc2ie 3778 . . . . . . . 8 ([(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3029sbcbii 3755 . . . . . . 7 ([(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3130sbcbii 3755 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
32 vex 3412 . . . . . . . 8 𝑒 ∈ V
3332resex 5899 . . . . . . 7 (𝑒 ↾ (1...3)) ∈ V
34 fvex 6730 . . . . . . 7 (𝑒‘4) ∈ V
35 df-2 11893 . . . . . . . . . . . . . 14 2 = (1 + 1)
36 df-3 11894 . . . . . . . . . . . . . . 15 3 = (2 + 1)
37 ssid 3923 . . . . . . . . . . . . . . 15 (1...3) ⊆ (1...3)
3836, 37jm2.27dlem5 40538 . . . . . . . . . . . . . 14 (1...2) ⊆ (1...3)
3935, 38jm2.27dlem5 40538 . . . . . . . . . . . . 13 (1...1) ⊆ (1...3)
40 1nn 11841 . . . . . . . . . . . . . 14 1 ∈ ℕ
4140jm2.27dlem3 40536 . . . . . . . . . . . . 13 1 ∈ (1...1)
4239, 41sselii 3897 . . . . . . . . . . . 12 1 ∈ (1...3)
4342jm2.27dlem1 40534 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘1) = (𝑒‘1))
4443eleq1d 2822 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
45 2nn 11903 . . . . . . . . . . . . . 14 2 ∈ ℕ
4645jm2.27dlem3 40536 . . . . . . . . . . . . 13 2 ∈ (1...2)
4746, 36, 45jm2.27dlem2 40535 . . . . . . . . . . . 12 2 ∈ (1...3)
4847jm2.27dlem1 40534 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘2) = (𝑒‘2))
4948eleq1d 2822 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) ∈ ℕ ↔ (𝑒‘2) ∈ ℕ))
5044, 49anbi12d 634 . . . . . . . . 9 (𝑎 = (𝑒 ↾ (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5150adantr 484 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5244adantr 484 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
53 id 22 . . . . . . . . . . 11 (𝑏 = (𝑒‘4) → 𝑏 = (𝑒‘4))
5448oveq1d 7228 . . . . . . . . . . . 12 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) + 1) = ((𝑒‘2) + 1))
5543, 54oveq12d 7231 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) Yrm ((𝑎‘2) + 1)) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
5653, 55eqeqan12rd 2752 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1)) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
5752, 56anbi12d 634 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
58 eleq1 2825 . . . . . . . . . . . 12 (𝑏 = (𝑒‘4) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
5958adantl 485 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
6053, 48oveqan12rd 7233 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
6160eqeq2d 2748 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘5) = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
6259, 61anbi12d 634 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
6353, 48oveqan12rd 7233 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
6463eqeq2d 2748 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
6559, 64anbi12d 634 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
663jm2.27dlem1 40534 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘3) = (𝑒‘3))
6766adantr 484 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘3) = (𝑒‘3))
68 oveq2 7221 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒‘4) → (2 · 𝑏) = (2 · (𝑒‘4)))
6968, 43oveqan12rd 7233 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((2 · 𝑏) · (𝑎‘1)) = ((2 · (𝑒‘4)) · (𝑒‘1)))
7043oveq1d 7228 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7170adantr 484 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7269, 71oveq12d 7231 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) = (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)))
7372oveq1d 7228 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) = ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1))
7467, 73breq12d 5066 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ↔ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)))
75 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → 𝑏 = (𝑒‘4))
7643adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘1) = (𝑒‘1))
7775, 76oveq12d 7231 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 − (𝑎‘1)) = ((𝑒‘4) − (𝑒‘1)))
7877oveq1d 7228 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 − (𝑎‘1)) · (𝑒‘5)) = (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))
7978oveq2d 7229 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) = ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))))
8079, 67oveq12d 7231 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) = (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))
8173, 80breq12d 5066 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) ↔ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))
8274, 81anbi12d 634 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))) ↔ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))
8365, 82anbi12d 634 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))
8462, 83anbi12d 634 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))
8557, 84anbi12d 634 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8651, 85anbi12d 634 . . . . . . 7 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))))
8733, 34, 86sbc2ie 3778 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8831, 87bitri 278 . . . . 5 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8988rabbii 3383 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))}
90 6nn0 12111 . . . . . . 7 6 ∈ ℕ0
91 2z 12209 . . . . . . 7 2 ∈ ℤ
92 ovex 7246 . . . . . . . 8 (1...6) ∈ V
93 df-4 11895 . . . . . . . . . . . 12 4 = (3 + 1)
94 df-5 11896 . . . . . . . . . . . . 13 5 = (4 + 1)
95 df-6 11897 . . . . . . . . . . . . . 14 6 = (5 + 1)
96 ssid 3923 . . . . . . . . . . . . . 14 (1...6) ⊆ (1...6)
9795, 96jm2.27dlem5 40538 . . . . . . . . . . . . 13 (1...5) ⊆ (1...6)
9894, 97jm2.27dlem5 40538 . . . . . . . . . . . 12 (1...4) ⊆ (1...6)
9993, 98jm2.27dlem5 40538 . . . . . . . . . . 11 (1...3) ⊆ (1...6)
10036, 99jm2.27dlem5 40538 . . . . . . . . . 10 (1...2) ⊆ (1...6)
10135, 100jm2.27dlem5 40538 . . . . . . . . 9 (1...1) ⊆ (1...6)
102101, 41sselii 3897 . . . . . . . 8 1 ∈ (1...6)
103 mzpproj 40262 . . . . . . . 8 (((1...6) ∈ V ∧ 1 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)))
10492, 102, 103mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))
105 eluzrabdioph 40331 . . . . . . 7 ((6 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6))
10690, 91, 104, 105mp3an 1463 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6)
107100, 46sselii 3897 . . . . . . . 8 2 ∈ (1...6)
108 mzpproj 40262 . . . . . . . 8 (((1...6) ∈ V ∧ 2 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6)))
10992, 107, 108mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))
110 elnnrabdioph 40332 . . . . . . 7 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6))
11190, 109, 110mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)
112 anrabdioph 40305 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6))
113106, 111, 112mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6)
114 elmapi 8530 . . . . . . . . . . 11 (𝑒 ∈ (ℕ0m (1...6)) → 𝑒:(1...6)⟶ℕ0)
115 ffvelrn 6902 . . . . . . . . . . 11 ((𝑒:(1...6)⟶ℕ0 ∧ 2 ∈ (1...6)) → (𝑒‘2) ∈ ℕ0)
116114, 107, 115sylancl 589 . . . . . . . . . 10 (𝑒 ∈ (ℕ0m (1...6)) → (𝑒‘2) ∈ ℕ0)
117 peano2nn0 12130 . . . . . . . . . 10 ((𝑒‘2) ∈ ℕ0 → ((𝑒‘2) + 1) ∈ ℕ0)
118 oveq2 7221 . . . . . . . . . . . . 13 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘1) Yrm 𝑏) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
119118eqeq2d 2748 . . . . . . . . . . . 12 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
120119anbi2d 632 . . . . . . . . . . 11 (𝑏 = ((𝑒‘2) + 1) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
121120ceqsrexv 3563 . . . . . . . . . 10 (((𝑒‘2) + 1) ∈ ℕ0 → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
122116, 117, 1213syl 18 . . . . . . . . 9 (𝑒 ∈ (ℕ0m (1...6)) → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
123122bicomd 226 . . . . . . . 8 (𝑒 ∈ (ℕ0m (1...6)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))))
124123rabbiia 3382 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))}
125 vex 3412 . . . . . . . . . . . 12 𝑎 ∈ V
126125resex 5899 . . . . . . . . . . 11 (𝑎 ↾ (1...6)) ∈ V
127 fvex 6730 . . . . . . . . . . 11 (𝑎‘7) ∈ V
128 id 22 . . . . . . . . . . . . 13 (𝑏 = (𝑎‘7) → 𝑏 = (𝑎‘7))
129107jm2.27dlem1 40534 . . . . . . . . . . . . . 14 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘2) = (𝑎‘2))
130129oveq1d 7228 . . . . . . . . . . . . 13 (𝑒 = (𝑎 ↾ (1...6)) → ((𝑒‘2) + 1) = ((𝑎‘2) + 1))
131128, 130eqeqan12rd 2752 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑏 = ((𝑒‘2) + 1) ↔ (𝑎‘7) = ((𝑎‘2) + 1)))
132102jm2.27dlem1 40534 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘1) = (𝑎‘1))
133132adantr 484 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘1) = (𝑎‘1))
134133eleq1d 2822 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
135 4nn 11913 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
136135jm2.27dlem3 40536 . . . . . . . . . . . . . . . . 17 4 ∈ (1...4)
13798, 136sselii 3897 . . . . . . . . . . . . . . . 16 4 ∈ (1...6)
138137jm2.27dlem1 40534 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘4) = (𝑎‘4))
139138adantr 484 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘4) = (𝑎‘4))
140132, 128oveqan12d 7232 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) Yrm 𝑏) = ((𝑎‘1) Yrm (𝑎‘7)))
141139, 140eqeq12d 2753 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
142134, 141anbi12d 634 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
143131, 142anbi12d 634 . . . . . . . . . . 11 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))))
144126, 127, 143sbc2ie 3778 . . . . . . . . . 10 ([(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
145144rabbii 3383 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} = {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))}
146 7nn0 12112 . . . . . . . . . . 11 7 ∈ ℕ0
147 ovex 7246 . . . . . . . . . . . 12 (1...7) ∈ V
148 7nn 11922 . . . . . . . . . . . . 13 7 ∈ ℕ
149148jm2.27dlem3 40536 . . . . . . . . . . . 12 7 ∈ (1...7)
150 mzpproj 40262 . . . . . . . . . . . 12 (((1...7) ∈ V ∧ 7 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)))
151147, 149, 150mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7))
152 df-7 11898 . . . . . . . . . . . . . 14 7 = (6 + 1)
153 6nn 11919 . . . . . . . . . . . . . 14 6 ∈ ℕ
154107, 152, 153jm2.27dlem2 40535 . . . . . . . . . . . . 13 2 ∈ (1...7)
155 mzpproj 40262 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 2 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)))
156147, 154, 155mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7))
157 1z 12207 . . . . . . . . . . . . 13 1 ∈ ℤ
158 mzpconstmpt 40265 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7)))
159147, 157, 158mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))
160 mzpaddmpt 40266 . . . . . . . . . . . 12 (((𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7)))
161156, 159, 160mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))
162 eqrabdioph 40302 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))) → {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7))
163146, 151, 161, 162mp3an 1463 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7)
164 rmydioph 40539 . . . . . . . . . . 11 {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
165 simp1 1138 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘1) = (𝑎‘1))
166165eleq1d 2822 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
167 simp3 1140 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘3) = (𝑎‘4))
168 simp2 1139 . . . . . . . . . . . . . . 15 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘2) = (𝑎‘7))
169165, 168oveq12d 7231 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑎‘1) Yrm (𝑎‘7)))
170167, 169eqeq12d 2753 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
171166, 170anbi12d 634 . . . . . . . . . . . 12 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
172102, 152, 153jm2.27dlem2 40535 . . . . . . . . . . . 12 1 ∈ (1...7)
173137, 152, 153jm2.27dlem2 40535 . . . . . . . . . . . 12 4 ∈ (1...7)
174171, 172, 149, 173rabren3dioph 40340 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7))
175146, 164, 174mp2an 692 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)
176 anrabdioph 40305 . . . . . . . . . 10 (({𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7) ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7))
177163, 175, 176mp2an 692 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7)
178145, 177eqeltri 2834 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)
179152rexfrabdioph 40320 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6))
18090, 178, 179mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6)
181124, 180eqeltri 2834 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6)
182 rmydioph 40539 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
183 simp1 1138 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘1) = (𝑒‘4))
184183eleq1d 2822 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
185 simp3 1140 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘3) = (𝑒‘5))
186 simp2 1139 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘2) = (𝑒‘2))
187183, 186oveq12d 7231 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
188185, 187eqeq12d 2753 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
189184, 188anbi12d 634 . . . . . . . . 9 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
190 5nn 11916 . . . . . . . . . . 11 5 ∈ ℕ
191190jm2.27dlem3 40536 . . . . . . . . . 10 5 ∈ (1...5)
192191, 95, 190jm2.27dlem2 40535 . . . . . . . . 9 5 ∈ (1...6)
193189, 137, 107, 192rabren3dioph 40340 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6))
19490, 182, 193mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6)
195 rmxdioph 40541 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
196 simp1 1138 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘1) = (𝑒‘4))
197196eleq1d 2822 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
198 simp3 1140 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘3) = (𝑒‘6))
199 simp2 1139 . . . . . . . . . . . . 13 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘2) = (𝑒‘2))
200196, 199oveq12d 7231 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
201198, 200eqeq12d 2753 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
202197, 201anbi12d 634 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
203153jm2.27dlem3 40536 . . . . . . . . . 10 6 ∈ (1...6)
204202, 137, 107, 203rabren3dioph 40340 . . . . . . . . 9 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6))
20590, 195, 204mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6)
20699, 3sselii 3897 . . . . . . . . . . 11 3 ∈ (1...6)
207 mzpproj 40262 . . . . . . . . . . 11 (((1...6) ∈ V ∧ 3 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)))
20892, 206, 207mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))
209 mzpconstmpt 40265 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 2 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)))
21092, 91, 209mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6))
211 mzpproj 40262 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 4 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)))
21292, 137, 211mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))
213 mzpmulmpt 40267 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)))
214210, 212, 213mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6))
215 mzpmulmpt 40267 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)))
216214, 104, 215mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6))
217 2nn0 12107 . . . . . . . . . . . . 13 2 ∈ ℕ0
218 mzpexpmpt 40270 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)) ∧ 2 ∈ ℕ0) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6)))
219104, 217, 218mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))
220 mzpsubmpt 40268 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)))
221216, 219, 220mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6))
222 mzpconstmpt 40265 . . . . . . . . . . . 12 (((1...6) ∈ V ∧ 1 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6)))
22392, 157, 222mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))
224 mzpsubmpt 40268 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)))
225221, 223, 224mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))
226 ltrabdioph 40333 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6))
22790, 208, 225, 226mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6)
228 mzpproj 40262 . . . . . . . . . . . . 13 (((1...6) ∈ V ∧ 6 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)))
22992, 203, 228mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6))
230 mzpsubmpt 40268 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)))
231212, 104, 230mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6))
232 mzpproj 40262 . . . . . . . . . . . . . 14 (((1...6) ∈ V ∧ 5 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6)))
23392, 192, 232mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))
234 mzpmulmpt 40267 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6)))
235231, 233, 234mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))
236 mzpsubmpt 40268 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)))
237229, 235, 236mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6))
238 mzpsubmpt 40268 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6)))
239237, 208, 238mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))
240 dvdsrabdioph 40335 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6))
24190, 225, 239, 240mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)
242 anrabdioph 40305 . . . . . . . . 9 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6))
243227, 241, 242mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)
244 anrabdioph 40305 . . . . . . . 8 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6))
245205, 243, 244mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)
246 anrabdioph 40305 . . . . . . 7 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6))
247194, 245, 246mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)
248 anrabdioph 40305 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6))
249181, 247, 248mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)
250 anrabdioph 40305 . . . . 5 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6))
251113, 249, 250mp2an 692 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6)
25289, 251eqeltri 2834 . . 3 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)
25393, 94, 953rexfrabdioph 40322 . . 3 ((3 ∈ ℕ0 ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3))
2549, 252, 253mp2an 692 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3)
2558, 254eqeltri 2834 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  {crab 3065  Vcvv 3408  [wsbc 3694   class class class wbr 5053  cmpt 5135  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cmin 11062  cn 11830  2c2 11885  3c3 11886  4c4 11887  5c5 11888  6c6 11889  7c7 11890  0cn0 12090  cz 12176  cuz 12438  ...cfz 13095  cexp 13635  cdvds 15815  mzPolycmzp 40247  Diophcdioph 40280   Xrm crmx 40425   Yrm crmy 40426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-numer 16291  df-denom 16292  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-mzpcl 40248  df-mzp 40249  df-dioph 40281  df-squarenn 40366  df-pell1qr 40367  df-pell14qr 40368  df-pell1234qr 40369  df-pellfund 40370  df-rmx 40427  df-rmy 40428
This theorem is referenced by:  expdioph  40548
  Copyright terms: Public domain W3C validator