Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem2 Structured version   Visualization version   GIF version

Theorem expdiophlem2 43061
Description: Lemma for expdioph 43062. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem expdiophlem2
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8773 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 3nn 12204 . . . . . 6 3 ∈ ℕ
32jm2.27dlem3 43050 . . . . 5 3 ∈ (1...3)
4 ffvelcdm 7014 . . . . 5 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
51, 3, 4sylancl 586 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘3) ∈ ℕ0)
6 expdiophlem1 43060 . . . 4 ((𝑎‘3) ∈ ℕ0 → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
75, 6syl 17 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))))
87rabbiia 3399 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))}
9 3nn0 12399 . . 3 3 ∈ ℕ0
10 fvex 6835 . . . . . . . . 9 (𝑒‘5) ∈ V
11 fvex 6835 . . . . . . . . 9 (𝑒‘6) ∈ V
12 eqeq1 2735 . . . . . . . . . . . . . 14 (𝑐 = (𝑒‘5) → (𝑐 = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))))
1312anbi2d 630 . . . . . . . . . . . . 13 (𝑐 = (𝑒‘5) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
1413adantr 480 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2)))))
15 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑑 = (𝑒‘6) → (𝑑 = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))))
1615anbi2d 630 . . . . . . . . . . . . . 14 (𝑑 = (𝑒‘6) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
1716adantl 481 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ↔ (𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2)))))
18 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → 𝑑 = (𝑒‘6))
19 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑒‘5) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑏 − (𝑎‘1)) · 𝑐) = ((𝑏 − (𝑎‘1)) · (𝑒‘5)))
2118, 20oveq12d 7364 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) = ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))))
2221oveq1d 7361 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) = (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))
2322breq2d 5103 . . . . . . . . . . . . . 14 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)) ↔ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))
2423anbi2d 630 . . . . . . . . . . . . 13 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))) ↔ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))
2517, 24anbi12d 632 . . . . . . . . . . . 12 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))
2614, 25anbi12d 632 . . . . . . . . . . 11 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → (((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))) ↔ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))
2726anbi2d 630 . . . . . . . . . 10 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
2827anbi2d 630 . . . . . . . . 9 ((𝑐 = (𝑒‘5) ∧ 𝑑 = (𝑒‘6)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))))))
2910, 11, 28sbc2ie 3817 . . . . . . . 8 ([(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3029sbcbii 3798 . . . . . . 7 ([(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
3130sbcbii 3798 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))))
32 vex 3440 . . . . . . . 8 𝑒 ∈ V
3332resex 5978 . . . . . . 7 (𝑒 ↾ (1...3)) ∈ V
34 fvex 6835 . . . . . . 7 (𝑒‘4) ∈ V
35 df-2 12188 . . . . . . . . . . . . . 14 2 = (1 + 1)
36 df-3 12189 . . . . . . . . . . . . . . 15 3 = (2 + 1)
37 ssid 3957 . . . . . . . . . . . . . . 15 (1...3) ⊆ (1...3)
3836, 37jm2.27dlem5 43052 . . . . . . . . . . . . . 14 (1...2) ⊆ (1...3)
3935, 38jm2.27dlem5 43052 . . . . . . . . . . . . 13 (1...1) ⊆ (1...3)
40 1nn 12136 . . . . . . . . . . . . . 14 1 ∈ ℕ
4140jm2.27dlem3 43050 . . . . . . . . . . . . 13 1 ∈ (1...1)
4239, 41sselii 3931 . . . . . . . . . . . 12 1 ∈ (1...3)
4342jm2.27dlem1 43048 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘1) = (𝑒‘1))
4443eleq1d 2816 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
45 2nn 12198 . . . . . . . . . . . . . 14 2 ∈ ℕ
4645jm2.27dlem3 43050 . . . . . . . . . . . . 13 2 ∈ (1...2)
4746, 36, 45jm2.27dlem2 43049 . . . . . . . . . . . 12 2 ∈ (1...3)
4847jm2.27dlem1 43048 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘2) = (𝑒‘2))
4948eleq1d 2816 . . . . . . . . . 10 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) ∈ ℕ ↔ (𝑒‘2) ∈ ℕ))
5044, 49anbi12d 632 . . . . . . . . 9 (𝑎 = (𝑒 ↾ (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5150adantr 480 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)))
5244adantr 480 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘1) ∈ (ℤ‘2)))
53 id 22 . . . . . . . . . . 11 (𝑏 = (𝑒‘4) → 𝑏 = (𝑒‘4))
5448oveq1d 7361 . . . . . . . . . . . 12 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘2) + 1) = ((𝑒‘2) + 1))
5543, 54oveq12d 7364 . . . . . . . . . . 11 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1) Yrm ((𝑎‘2) + 1)) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
5653, 55eqeqan12rd 2746 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1)) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
5752, 56anbi12d 632 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
58 eleq1 2819 . . . . . . . . . . . 12 (𝑏 = (𝑒‘4) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
5958adantl 481 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
6053, 48oveqan12rd 7366 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
6160eqeq2d 2742 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘5) = (𝑏 Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
6259, 61anbi12d 632 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
6353, 48oveqan12rd 7366 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
6463eqeq2d 2742 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) = (𝑏 Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
6559, 64anbi12d 632 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
663jm2.27dlem1 43048 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 ↾ (1...3)) → (𝑎‘3) = (𝑒‘3))
6766adantr 480 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘3) = (𝑒‘3))
68 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒‘4) → (2 · 𝑏) = (2 · (𝑒‘4)))
6968, 43oveqan12rd 7366 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((2 · 𝑏) · (𝑎‘1)) = ((2 · (𝑒‘4)) · (𝑒‘1)))
7043oveq1d 7361 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑒 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7170adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘1)↑2) = ((𝑒‘1)↑2))
7269, 71oveq12d 7364 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) = (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)))
7372oveq1d 7361 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) = ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1))
7467, 73breq12d 5104 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ↔ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)))
75 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → 𝑏 = (𝑒‘4))
7643adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑎‘1) = (𝑒‘1))
7775, 76oveq12d 7364 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (𝑏 − (𝑎‘1)) = ((𝑒‘4) − (𝑒‘1)))
7877oveq1d 7361 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑏 − (𝑎‘1)) · (𝑒‘5)) = (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))
7978oveq2d 7362 . . . . . . . . . . . . . 14 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) = ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))))
8079, 67oveq12d 7364 . . . . . . . . . . . . 13 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) = (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))
8173, 80breq12d 5104 . . . . . . . . . . . 12 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)) ↔ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))
8274, 81anbi12d 632 . . . . . . . . . . 11 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))) ↔ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))
8365, 82anbi12d 632 . . . . . . . . . 10 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))
8462, 83anbi12d 632 . . . . . . . . 9 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → (((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))) ↔ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))
8557, 84anbi12d 632 . . . . . . . 8 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3)))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8651, 85anbi12d 632 . . . . . . 7 ((𝑎 = (𝑒 ↾ (1...3)) ∧ 𝑏 = (𝑒‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))))
8733, 34, 86sbc2ie 3817 . . . . . 6 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘5) = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ (𝑒‘6) = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ (((𝑒‘6) − ((𝑏 − (𝑎‘1)) · (𝑒‘5))) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8831, 87bitri 275 . . . . 5 ([(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3))))))) ↔ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))))
8988rabbii 3400 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))}
90 6nn0 12402 . . . . . . 7 6 ∈ ℕ0
91 2z 12504 . . . . . . 7 2 ∈ ℤ
92 ovex 7379 . . . . . . . 8 (1...6) ∈ V
93 df-4 12190 . . . . . . . . . . . 12 4 = (3 + 1)
94 df-5 12191 . . . . . . . . . . . . 13 5 = (4 + 1)
95 df-6 12192 . . . . . . . . . . . . . 14 6 = (5 + 1)
96 ssid 3957 . . . . . . . . . . . . . 14 (1...6) ⊆ (1...6)
9795, 96jm2.27dlem5 43052 . . . . . . . . . . . . 13 (1...5) ⊆ (1...6)
9894, 97jm2.27dlem5 43052 . . . . . . . . . . . 12 (1...4) ⊆ (1...6)
9993, 98jm2.27dlem5 43052 . . . . . . . . . . 11 (1...3) ⊆ (1...6)
10036, 99jm2.27dlem5 43052 . . . . . . . . . 10 (1...2) ⊆ (1...6)
10135, 100jm2.27dlem5 43052 . . . . . . . . 9 (1...1) ⊆ (1...6)
102101, 41sselii 3931 . . . . . . . 8 1 ∈ (1...6)
103 mzpproj 42776 . . . . . . . 8 (((1...6) ∈ V ∧ 1 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)))
10492, 102, 103mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))
105 eluzrabdioph 42845 . . . . . . 7 ((6 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6))
10690, 91, 104, 105mp3an 1463 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6)
107100, 46sselii 3931 . . . . . . . 8 2 ∈ (1...6)
108 mzpproj 42776 . . . . . . . 8 (((1...6) ∈ V ∧ 2 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6)))
10992, 107, 108mp2an 692 . . . . . . 7 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))
110 elnnrabdioph 42846 . . . . . . 7 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘2)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6))
11190, 109, 110mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)
112 anrabdioph 42819 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘1) ∈ (ℤ‘2)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘2) ∈ ℕ} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6))
113106, 111, 112mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6)
114 elmapi 8773 . . . . . . . . . . 11 (𝑒 ∈ (ℕ0m (1...6)) → 𝑒:(1...6)⟶ℕ0)
115 ffvelcdm 7014 . . . . . . . . . . 11 ((𝑒:(1...6)⟶ℕ0 ∧ 2 ∈ (1...6)) → (𝑒‘2) ∈ ℕ0)
116114, 107, 115sylancl 586 . . . . . . . . . 10 (𝑒 ∈ (ℕ0m (1...6)) → (𝑒‘2) ∈ ℕ0)
117 peano2nn0 12421 . . . . . . . . . 10 ((𝑒‘2) ∈ ℕ0 → ((𝑒‘2) + 1) ∈ ℕ0)
118 oveq2 7354 . . . . . . . . . . . . 13 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘1) Yrm 𝑏) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))
119118eqeq2d 2742 . . . . . . . . . . . 12 (𝑏 = ((𝑒‘2) + 1) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))))
120119anbi2d 630 . . . . . . . . . . 11 (𝑏 = ((𝑒‘2) + 1) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
121120ceqsrexv 3610 . . . . . . . . . 10 (((𝑒‘2) + 1) ∈ ℕ0 → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
122116, 117, 1213syl 18 . . . . . . . . 9 (𝑒 ∈ (ℕ0m (1...6)) → (∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))))
123122bicomd 223 . . . . . . . 8 (𝑒 ∈ (ℕ0m (1...6)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))))
124123rabbiia 3399 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} = {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))}
125 vex 3440 . . . . . . . . . . . 12 𝑎 ∈ V
126125resex 5978 . . . . . . . . . . 11 (𝑎 ↾ (1...6)) ∈ V
127 fvex 6835 . . . . . . . . . . 11 (𝑎‘7) ∈ V
128 id 22 . . . . . . . . . . . . 13 (𝑏 = (𝑎‘7) → 𝑏 = (𝑎‘7))
129107jm2.27dlem1 43048 . . . . . . . . . . . . . 14 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘2) = (𝑎‘2))
130129oveq1d 7361 . . . . . . . . . . . . 13 (𝑒 = (𝑎 ↾ (1...6)) → ((𝑒‘2) + 1) = ((𝑎‘2) + 1))
131128, 130eqeqan12rd 2746 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑏 = ((𝑒‘2) + 1) ↔ (𝑎‘7) = ((𝑎‘2) + 1)))
132102jm2.27dlem1 43048 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘1) = (𝑎‘1))
133132adantr 480 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘1) = (𝑎‘1))
134133eleq1d 2816 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
135 4nn 12208 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
136135jm2.27dlem3 43050 . . . . . . . . . . . . . . . . 17 4 ∈ (1...4)
13798, 136sselii 3931 . . . . . . . . . . . . . . . 16 4 ∈ (1...6)
138137jm2.27dlem1 43048 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎 ↾ (1...6)) → (𝑒‘4) = (𝑎‘4))
139138adantr 480 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (𝑒‘4) = (𝑎‘4))
140132, 128oveqan12d 7365 . . . . . . . . . . . . . 14 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘1) Yrm 𝑏) = ((𝑎‘1) Yrm (𝑎‘7)))
141139, 140eqeq12d 2747 . . . . . . . . . . . . 13 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑒‘4) = ((𝑒‘1) Yrm 𝑏) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
142134, 141anbi12d 632 . . . . . . . . . . . 12 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
143131, 142anbi12d 632 . . . . . . . . . . 11 ((𝑒 = (𝑎 ↾ (1...6)) ∧ 𝑏 = (𝑎‘7)) → ((𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))))
144126, 127, 143sbc2ie 3817 . . . . . . . . . 10 ([(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏))) ↔ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
145144rabbii 3400 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} = {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))}
146 7nn0 12403 . . . . . . . . . . 11 7 ∈ ℕ0
147 ovex 7379 . . . . . . . . . . . 12 (1...7) ∈ V
148 7nn 12217 . . . . . . . . . . . . 13 7 ∈ ℕ
149148jm2.27dlem3 43050 . . . . . . . . . . . 12 7 ∈ (1...7)
150 mzpproj 42776 . . . . . . . . . . . 12 (((1...7) ∈ V ∧ 7 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)))
151147, 149, 150mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7))
152 df-7 12193 . . . . . . . . . . . . . 14 7 = (6 + 1)
153 6nn 12214 . . . . . . . . . . . . . 14 6 ∈ ℕ
154107, 152, 153jm2.27dlem2 43049 . . . . . . . . . . . . 13 2 ∈ (1...7)
155 mzpproj 42776 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 2 ∈ (1...7)) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)))
156147, 154, 155mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7))
157 1z 12502 . . . . . . . . . . . . 13 1 ∈ ℤ
158 mzpconstmpt 42779 . . . . . . . . . . . . 13 (((1...7) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7)))
159147, 157, 158mp2an 692 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))
160 mzpaddmpt 42780 . . . . . . . . . . . 12 (((𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ 1) ∈ (mzPoly‘(1...7))) → (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7)))
161156, 159, 160mp2an 692 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))
162 eqrabdioph 42816 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ (𝑎‘7)) ∈ (mzPoly‘(1...7)) ∧ (𝑎 ∈ (ℤ ↑m (1...7)) ↦ ((𝑎‘2) + 1)) ∈ (mzPoly‘(1...7))) → {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7))
163146, 151, 161, 162mp3an 1463 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7)
164 rmydioph 43053 . . . . . . . . . . 11 {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
165 simp1 1136 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘1) = (𝑎‘1))
166165eleq1d 2816 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑎‘1) ∈ (ℤ‘2)))
167 simp3 1138 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘3) = (𝑎‘4))
168 simp2 1137 . . . . . . . . . . . . . . 15 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (𝑏‘2) = (𝑎‘7))
169165, 168oveq12d 7364 . . . . . . . . . . . . . 14 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑎‘1) Yrm (𝑎‘7)))
170167, 169eqeq12d 2747 . . . . . . . . . . . . 13 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))
171166, 170anbi12d 632 . . . . . . . . . . . 12 (((𝑏‘1) = (𝑎‘1) ∧ (𝑏‘2) = (𝑎‘7) ∧ (𝑏‘3) = (𝑎‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))))
172102, 152, 153jm2.27dlem2 43049 . . . . . . . . . . . 12 1 ∈ (1...7)
173137, 152, 153jm2.27dlem2 43049 . . . . . . . . . . . 12 4 ∈ (1...7)
174171, 172, 149, 173rabren3dioph 42854 . . . . . . . . . . 11 ((7 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0m (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7))
175146, 164, 174mp2an 692 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)
176 anrabdioph 42819 . . . . . . . . . 10 (({𝑎 ∈ (ℕ0m (1...7)) ∣ (𝑎‘7) = ((𝑎‘2) + 1)} ∈ (Dioph‘7) ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7)))} ∈ (Dioph‘7)) → {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7))
177163, 175, 176mp2an 692 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...7)) ∣ ((𝑎‘7) = ((𝑎‘2) + 1) ∧ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘4) = ((𝑎‘1) Yrm (𝑎‘7))))} ∈ (Dioph‘7)
178145, 177eqeltri 2827 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)
179152rexfrabdioph 42834 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...7)) ∣ [(𝑎 ↾ (1...6)) / 𝑒][(𝑎‘7) / 𝑏](𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘7)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6))
18090, 178, 179mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑒‘2) + 1) ∧ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm 𝑏)))} ∈ (Dioph‘6)
181124, 180eqeltri 2827 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6)
182 rmydioph 43053 . . . . . . . 8 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
183 simp1 1136 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘1) = (𝑒‘4))
184183eleq1d 2816 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
185 simp3 1138 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘3) = (𝑒‘5))
186 simp2 1137 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (𝑎‘2) = (𝑒‘2))
187183, 186oveq12d 7364 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑒‘4) Yrm (𝑒‘2)))
188185, 187eqeq12d 2747 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))))
189184, 188anbi12d 632 . . . . . . . . 9 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘5)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))))
190 5nn 12211 . . . . . . . . . . 11 5 ∈ ℕ
191190jm2.27dlem3 43050 . . . . . . . . . 10 5 ∈ (1...5)
192191, 95, 190jm2.27dlem2 43049 . . . . . . . . 9 5 ∈ (1...6)
193189, 137, 107, 192rabren3dioph 42854 . . . . . . . 8 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6))
19490, 182, 193mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6)
195 rmxdioph 43055 . . . . . . . . 9 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
196 simp1 1136 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘1) = (𝑒‘4))
197196eleq1d 2816 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑒‘4) ∈ (ℤ‘2)))
198 simp3 1138 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘3) = (𝑒‘6))
199 simp2 1137 . . . . . . . . . . . . 13 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (𝑎‘2) = (𝑒‘2))
200196, 199oveq12d 7364 . . . . . . . . . . . 12 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘1) Xrm (𝑎‘2)) = ((𝑒‘4) Xrm (𝑒‘2)))
201198, 200eqeq12d 2747 . . . . . . . . . . 11 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))))
202197, 201anbi12d 632 . . . . . . . . . 10 (((𝑎‘1) = (𝑒‘4) ∧ (𝑎‘2) = (𝑒‘2) ∧ (𝑎‘3) = (𝑒‘6)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))))
203153jm2.27dlem3 43050 . . . . . . . . . 10 6 ∈ (1...6)
204202, 137, 107, 203rabren3dioph 42854 . . . . . . . . 9 ((6 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6))
20590, 195, 204mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6)
20699, 3sselii 3931 . . . . . . . . . . 11 3 ∈ (1...6)
207 mzpproj 42776 . . . . . . . . . . 11 (((1...6) ∈ V ∧ 3 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)))
20892, 206, 207mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))
209 mzpconstmpt 42779 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 2 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)))
21092, 91, 209mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6))
211 mzpproj 42776 . . . . . . . . . . . . . . 15 (((1...6) ∈ V ∧ 4 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)))
21292, 137, 211mp2an 692 . . . . . . . . . . . . . 14 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))
213 mzpmulmpt 42781 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ 2) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)))
214210, 212, 213mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6))
215 mzpmulmpt 42781 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (2 · (𝑒‘4))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)))
216214, 104, 215mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6))
217 2nn0 12398 . . . . . . . . . . . . 13 2 ∈ ℕ0
218 mzpexpmpt 42784 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6)) ∧ 2 ∈ ℕ0) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6)))
219104, 217, 218mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))
220 mzpsubmpt 42782 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((2 · (𝑒‘4)) · (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘1)↑2)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)))
221216, 219, 220mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6))
222 mzpconstmpt 42779 . . . . . . . . . . . 12 (((1...6) ∈ V ∧ 1 ∈ ℤ) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6)))
22392, 157, 222mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))
224 mzpsubmpt 42782 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ 1) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)))
225221, 223, 224mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))
226 ltrabdioph 42847 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6))
22790, 208, 225, 226mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6)
228 mzpproj 42776 . . . . . . . . . . . . 13 (((1...6) ∈ V ∧ 6 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)))
22992, 203, 228mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6))
230 mzpsubmpt 42782 . . . . . . . . . . . . . 14 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘4)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘1)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)))
231212, 104, 230mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6))
232 mzpproj 42776 . . . . . . . . . . . . . 14 (((1...6) ∈ V ∧ 5 ∈ (1...6)) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6)))
23392, 192, 232mp2an 692 . . . . . . . . . . . . 13 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))
234 mzpmulmpt 42781 . . . . . . . . . . . . 13 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘4) − (𝑒‘1))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘5)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6)))
235231, 233, 234mp2an 692 . . . . . . . . . . . 12 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))
236 mzpsubmpt 42782 . . . . . . . . . . . 12 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘6)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)))
237229, 235, 236mp2an 692 . . . . . . . . . . 11 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6))
238 mzpsubmpt 42782 . . . . . . . . . . 11 (((𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5)))) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (𝑒‘3)) ∈ (mzPoly‘(1...6))) → (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6)))
239237, 208, 238mp2an 692 . . . . . . . . . 10 (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))
240 dvdsrabdioph 42849 . . . . . . . . . 10 ((6 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)) ∈ (mzPoly‘(1...6)) ∧ (𝑒 ∈ (ℤ ↑m (1...6)) ↦ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))) ∈ (mzPoly‘(1...6))) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6))
24190, 225, 239, 240mp3an 1463 . . . . . . . . 9 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)
242 anrabdioph 42819 . . . . . . . . 9 (({𝑒 ∈ (ℕ0m (1...6)) ∣ (𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6))
243227, 241, 242mp2an 692 . . . . . . . 8 {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)
244 anrabdioph 42819 . . . . . . . 8 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6))
245205, 243, 244mp2an 692 . . . . . . 7 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)
246 anrabdioph 42819 . . . . . . 7 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6))
247194, 245, 246mp2an 692 . . . . . 6 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)
248 anrabdioph 42819 . . . . . 6 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1)))} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6))
249181, 247, 248mp2an 692 . . . . 5 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)
250 anrabdioph 42819 . . . . 5 (({𝑒 ∈ (ℕ0m (1...6)) ∣ ((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ)} ∈ (Dioph‘6) ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3))))))} ∈ (Dioph‘6)) → {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6))
251113, 249, 250mp2an 692 . . . 4 {𝑒 ∈ (ℕ0m (1...6)) ∣ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘2) ∈ ℕ) ∧ (((𝑒‘1) ∈ (ℤ‘2) ∧ (𝑒‘4) = ((𝑒‘1) Yrm ((𝑒‘2) + 1))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘5) = ((𝑒‘4) Yrm (𝑒‘2))) ∧ (((𝑒‘4) ∈ (ℤ‘2) ∧ (𝑒‘6) = ((𝑒‘4) Xrm (𝑒‘2))) ∧ ((𝑒‘3) < ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∧ ((((2 · (𝑒‘4)) · (𝑒‘1)) − ((𝑒‘1)↑2)) − 1) ∥ (((𝑒‘6) − (((𝑒‘4) − (𝑒‘1)) · (𝑒‘5))) − (𝑒‘3)))))))} ∈ (Dioph‘6)
25289, 251eqeltri 2827 . . 3 {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)
25393, 94, 953rexfrabdioph 42836 . . 3 ((3 ∈ ℕ0 ∧ {𝑒 ∈ (ℕ0m (1...6)) ∣ [(𝑒 ↾ (1...3)) / 𝑎][(𝑒‘4) / 𝑏][(𝑒‘5) / 𝑐][(𝑒‘6) / 𝑑](((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘6)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3))
2549, 252, 253mp2an 692 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm ((𝑎‘2) + 1))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑐 = (𝑏 Yrm (𝑎‘2))) ∧ ((𝑏 ∈ (ℤ‘2) ∧ 𝑑 = (𝑏 Xrm (𝑎‘2))) ∧ ((𝑎‘3) < ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∧ ((((2 · 𝑏) · (𝑎‘1)) − ((𝑎‘1)↑2)) − 1) ∥ ((𝑑 − ((𝑏 − (𝑎‘1)) · 𝑐)) − (𝑎‘3)))))))} ∈ (Dioph‘3)
2558, 254eqeltri 2827 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  [wsbc 3741   class class class wbr 5091  cmpt 5172  cres 5618  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  7c7 12185  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  cdvds 16163  mzPolycmzp 42761  Diophcdioph 42794   Xrm crmx 42939   Yrm crmy 42940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-mzpcl 42762  df-mzp 42763  df-dioph 42795  df-squarenn 42880  df-pell1qr 42881  df-pell14qr 42882  df-pell1234qr 42883  df-pellfund 42884  df-rmx 42941  df-rmy 42942
This theorem is referenced by:  expdioph  43062
  Copyright terms: Public domain W3C validator