Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Visualization version   GIF version

Theorem rmxdioph 38192
Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmxdioph
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘1) ∈ (ℤ‘2))
2 elmapi 8082 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
3 df-3 11336 . . . . . . . . . 10 3 = (2 + 1)
4 ssid 3783 . . . . . . . . . 10 (1...3) ⊆ (1...3)
53, 4jm2.27dlem5 38189 . . . . . . . . 9 (1...2) ⊆ (1...3)
6 2nn 11345 . . . . . . . . . 10 2 ∈ ℕ
76jm2.27dlem3 38187 . . . . . . . . 9 2 ∈ (1...2)
85, 7sselii 3758 . . . . . . . 8 2 ∈ (1...3)
9 ffvelrn 6547 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
102, 8, 9sylancl 580 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
1110adantr 472 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘2) ∈ ℕ0)
12 3nn 11351 . . . . . . . . 9 3 ∈ ℕ
1312jm2.27dlem3 38187 . . . . . . . 8 3 ∈ (1...3)
14 ffvelrn 6547 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
152, 13, 14sylancl 580 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘3) ∈ ℕ0)
1615adantr 472 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘3) ∈ ℕ0)
17 rmxdiophlem 38191 . . . . . 6 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ0 ∧ (𝑎‘3) ∈ ℕ0) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
181, 11, 16, 17syl3anc 1490 . . . . 5 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
1918pm5.32da 574 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))))
20 anass 460 . . . . . 6 ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2120rexbii 3188 . . . . 5 (∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
22 r19.42v 3239 . . . . 5 (∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2321, 22bitr2i 267 . . . 4 (((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))
2419, 23syl6bb 278 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2524rabbiia 3333 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)}
26 3nn0 11558 . . 3 3 ∈ ℕ0
27 vex 3353 . . . . . . 7 𝑐 ∈ V
2827resex 5620 . . . . . 6 (𝑐 ↾ (1...3)) ∈ V
29 fvex 6388 . . . . . 6 (𝑐‘4) ∈ V
30 df-2 11335 . . . . . . . . . . . . 13 2 = (1 + 1)
3130, 5jm2.27dlem5 38189 . . . . . . . . . . . 12 (1...1) ⊆ (1...3)
32 1nn 11287 . . . . . . . . . . . . 13 1 ∈ ℕ
3332jm2.27dlem3 38187 . . . . . . . . . . . 12 1 ∈ (1...1)
3431, 33sselii 3758 . . . . . . . . . . 11 1 ∈ (1...3)
3534jm2.27dlem1 38185 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘1) = (𝑐‘1))
3635eleq1d 2829 . . . . . . . . 9 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
3736adantr 472 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
38 simpr 477 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → 𝑏 = (𝑐‘4))
398jm2.27dlem1 38185 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘2) = (𝑐‘2))
4035, 39oveq12d 6860 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4140adantr 472 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4238, 41eqeq12d 2780 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
4337, 42anbi12d 624 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
4413jm2.27dlem1 38185 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘3) = (𝑐‘3))
4544oveq1d 6857 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4645adantr 472 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4735oveq1d 6857 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑐‘1)↑2))
4847oveq1d 6857 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑐‘1)↑2) − 1))
49 oveq1 6849 . . . . . . . . . 10 (𝑏 = (𝑐‘4) → (𝑏↑2) = ((𝑐‘4)↑2))
5048, 49oveqan12d 6861 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1)↑2) − 1) · (𝑏↑2)) = ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))
5146, 50oveq12d 6860 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))))
5251eqeq1d 2767 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1 ↔ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5343, 52anbi12d 624 . . . . . 6 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5428, 29, 53sbc2ie 3664 . . . . 5 ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5554rabbii 3334 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} = {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)}
56 4nn0 11559 . . . . . 6 4 ∈ ℕ0
57 rmydioph 38190 . . . . . 6 {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
58 simp1 1166 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘1) = (𝑐‘1))
5958eleq1d 2829 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
60 simp3 1168 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘3) = (𝑐‘4))
61 simp2 1167 . . . . . . . . . 10 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘2) = (𝑐‘2))
6258, 61oveq12d 6860 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
6360, 62eqeq12d 2780 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
6459, 63anbi12d 624 . . . . . . 7 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
65 df-4 11337 . . . . . . . . . . 11 4 = (3 + 1)
66 ssid 3783 . . . . . . . . . . 11 (1...4) ⊆ (1...4)
6765, 66jm2.27dlem5 38189 . . . . . . . . . 10 (1...3) ⊆ (1...4)
683, 67jm2.27dlem5 38189 . . . . . . . . 9 (1...2) ⊆ (1...4)
6930, 68jm2.27dlem5 38189 . . . . . . . 8 (1...1) ⊆ (1...4)
7069, 33sselii 3758 . . . . . . 7 1 ∈ (1...4)
7168, 7sselii 3758 . . . . . . 7 2 ∈ (1...4)
72 4nn 11356 . . . . . . . 8 4 ∈ ℕ
7372jm2.27dlem3 38187 . . . . . . 7 4 ∈ (1...4)
7464, 70, 71, 73rabren3dioph 37989 . . . . . 6 ((4 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4))
7556, 57, 74mp2an 683 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4)
76 ovex 6874 . . . . . . . . 9 (1...4) ∈ V
7767, 13sselii 3758 . . . . . . . . 9 3 ∈ (1...4)
78 mzpproj 37910 . . . . . . . . 9 (((1...4) ∈ V ∧ 3 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)))
7976, 77, 78mp2an 683 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4))
80 2nn0 11557 . . . . . . . 8 2 ∈ ℕ0
81 mzpexpmpt 37918 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)))
8279, 80, 81mp2an 683 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4))
83 mzpproj 37910 . . . . . . . . . . 11 (((1...4) ∈ V ∧ 1 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)))
8476, 70, 83mp2an 683 . . . . . . . . . 10 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4))
85 mzpexpmpt 37918 . . . . . . . . . 10 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)))
8684, 80, 85mp2an 683 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4))
87 1z 11654 . . . . . . . . . 10 1 ∈ ℤ
88 mzpconstmpt 37913 . . . . . . . . . 10 (((1...4) ∈ V ∧ 1 ∈ ℤ) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4)))
8976, 87, 88mp2an 683 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))
90 mzpsubmpt 37916 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)))
9186, 89, 90mp2an 683 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4))
92 mzpproj 37910 . . . . . . . . . 10 (((1...4) ∈ V ∧ 4 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)))
9376, 73, 92mp2an 683 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4))
94 mzpexpmpt 37918 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4)))
9593, 80, 94mp2an 683 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))
96 mzpmulmpt 37915 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4)))
9791, 95, 96mp2an 683 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))
98 mzpsubmpt 37916 . . . . . . 7 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)))
9982, 97, 98mp2an 683 . . . . . 6 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4))
100 eqrabdioph 37951 . . . . . 6 ((4 ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4))
10156, 99, 89, 100mp3an 1585 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)
102 anrabdioph 37954 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4) ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4))
10375, 101, 102mp2an 683 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4)
10455, 103eqeltri 2840 . . 3 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)
10565rexfrabdioph 37969 . . 3 ((3 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3))
10626, 104, 105mp2an 683 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3)
10725, 106eqeltri 2840 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  {crab 3059  Vcvv 3350  [wsbc 3596  cmpt 4888  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  1c1 10190   · cmul 10194  cmin 10520  2c2 11327  3c3 11328  4c4 11329  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  cexp 13067  mzPolycmzp 37895  Diophcdioph 37928   Xrm crmx 38074   Yrm crmy 38075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-pi 15087  df-dvds 15268  df-gcd 15500  df-prm 15668  df-numer 15724  df-denom 15725  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-mzpcl 37896  df-mzp 37897  df-dioph 37929  df-squarenn 38015  df-pell1qr 38016  df-pell14qr 38017  df-pell1234qr 38018  df-pellfund 38019  df-rmx 38076  df-rmy 38077
This theorem is referenced by:  expdiophlem2  38198
  Copyright terms: Public domain W3C validator