Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Visualization version   GIF version

Theorem rmxdioph 38109
Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmxdioph
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘1) ∈ (ℤ‘2))
2 elmapi 8031 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
3 df-3 11282 . . . . . . . . . 10 3 = (2 + 1)
4 ssid 3773 . . . . . . . . . 10 (1...3) ⊆ (1...3)
53, 4jm2.27dlem5 38106 . . . . . . . . 9 (1...2) ⊆ (1...3)
6 2nn 11387 . . . . . . . . . 10 2 ∈ ℕ
76jm2.27dlem3 38104 . . . . . . . . 9 2 ∈ (1...2)
85, 7sselii 3749 . . . . . . . 8 2 ∈ (1...3)
9 ffvelrn 6500 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
102, 8, 9sylancl 574 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
1110adantr 466 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘2) ∈ ℕ0)
12 3nn 11388 . . . . . . . . 9 3 ∈ ℕ
1312jm2.27dlem3 38104 . . . . . . . 8 3 ∈ (1...3)
14 ffvelrn 6500 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
152, 13, 14sylancl 574 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘3) ∈ ℕ0)
1615adantr 466 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘3) ∈ ℕ0)
17 rmxdiophlem 38108 . . . . . 6 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ0 ∧ (𝑎‘3) ∈ ℕ0) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
181, 11, 16, 17syl3anc 1476 . . . . 5 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
1918pm5.32da 568 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))))
20 anass 459 . . . . . 6 ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2120rexbii 3189 . . . . 5 (∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
22 r19.42v 3240 . . . . 5 (∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2321, 22bitr2i 265 . . . 4 (((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))
2419, 23syl6bb 276 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2524rabbiia 3334 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)}
26 3nn0 11512 . . 3 3 ∈ ℕ0
27 vex 3354 . . . . . . 7 𝑐 ∈ V
2827resex 5584 . . . . . 6 (𝑐 ↾ (1...3)) ∈ V
29 fvex 6342 . . . . . 6 (𝑐‘4) ∈ V
30 df-2 11281 . . . . . . . . . . . . 13 2 = (1 + 1)
3130, 5jm2.27dlem5 38106 . . . . . . . . . . . 12 (1...1) ⊆ (1...3)
32 1nn 11233 . . . . . . . . . . . . 13 1 ∈ ℕ
3332jm2.27dlem3 38104 . . . . . . . . . . . 12 1 ∈ (1...1)
3431, 33sselii 3749 . . . . . . . . . . 11 1 ∈ (1...3)
3534jm2.27dlem1 38102 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘1) = (𝑐‘1))
3635eleq1d 2835 . . . . . . . . 9 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
3736adantr 466 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
38 simpr 471 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → 𝑏 = (𝑐‘4))
398jm2.27dlem1 38102 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘2) = (𝑐‘2))
4035, 39oveq12d 6811 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4140adantr 466 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4238, 41eqeq12d 2786 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
4337, 42anbi12d 616 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
4413jm2.27dlem1 38102 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘3) = (𝑐‘3))
4544oveq1d 6808 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4645adantr 466 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4735oveq1d 6808 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑐‘1)↑2))
4847oveq1d 6808 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑐‘1)↑2) − 1))
49 oveq1 6800 . . . . . . . . . 10 (𝑏 = (𝑐‘4) → (𝑏↑2) = ((𝑐‘4)↑2))
5048, 49oveqan12d 6812 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1)↑2) − 1) · (𝑏↑2)) = ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))
5146, 50oveq12d 6811 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))))
5251eqeq1d 2773 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1 ↔ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5343, 52anbi12d 616 . . . . . 6 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5428, 29, 53sbc2ie 3655 . . . . 5 ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5554rabbii 3335 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} = {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)}
56 4nn0 11513 . . . . . 6 4 ∈ ℕ0
57 rmydioph 38107 . . . . . 6 {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
58 simp1 1130 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘1) = (𝑐‘1))
5958eleq1d 2835 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
60 simp3 1132 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘3) = (𝑐‘4))
61 simp2 1131 . . . . . . . . . 10 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘2) = (𝑐‘2))
6258, 61oveq12d 6811 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
6360, 62eqeq12d 2786 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
6459, 63anbi12d 616 . . . . . . 7 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
65 df-4 11283 . . . . . . . . . . 11 4 = (3 + 1)
66 ssid 3773 . . . . . . . . . . 11 (1...4) ⊆ (1...4)
6765, 66jm2.27dlem5 38106 . . . . . . . . . 10 (1...3) ⊆ (1...4)
683, 67jm2.27dlem5 38106 . . . . . . . . 9 (1...2) ⊆ (1...4)
6930, 68jm2.27dlem5 38106 . . . . . . . 8 (1...1) ⊆ (1...4)
7069, 33sselii 3749 . . . . . . 7 1 ∈ (1...4)
7168, 7sselii 3749 . . . . . . 7 2 ∈ (1...4)
72 4nn 11389 . . . . . . . 8 4 ∈ ℕ
7372jm2.27dlem3 38104 . . . . . . 7 4 ∈ (1...4)
7464, 70, 71, 73rabren3dioph 37905 . . . . . 6 ((4 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4))
7556, 57, 74mp2an 672 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4)
76 ovex 6823 . . . . . . . . 9 (1...4) ∈ V
7767, 13sselii 3749 . . . . . . . . 9 3 ∈ (1...4)
78 mzpproj 37826 . . . . . . . . 9 (((1...4) ∈ V ∧ 3 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)))
7976, 77, 78mp2an 672 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4))
80 2nn0 11511 . . . . . . . 8 2 ∈ ℕ0
81 mzpexpmpt 37834 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)))
8279, 80, 81mp2an 672 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4))
83 mzpproj 37826 . . . . . . . . . . 11 (((1...4) ∈ V ∧ 1 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)))
8476, 70, 83mp2an 672 . . . . . . . . . 10 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4))
85 mzpexpmpt 37834 . . . . . . . . . 10 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)))
8684, 80, 85mp2an 672 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4))
87 1z 11609 . . . . . . . . . 10 1 ∈ ℤ
88 mzpconstmpt 37829 . . . . . . . . . 10 (((1...4) ∈ V ∧ 1 ∈ ℤ) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4)))
8976, 87, 88mp2an 672 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))
90 mzpsubmpt 37832 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)))
9186, 89, 90mp2an 672 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4))
92 mzpproj 37826 . . . . . . . . . 10 (((1...4) ∈ V ∧ 4 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)))
9376, 73, 92mp2an 672 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4))
94 mzpexpmpt 37834 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4)))
9593, 80, 94mp2an 672 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))
96 mzpmulmpt 37831 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4)))
9791, 95, 96mp2an 672 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))
98 mzpsubmpt 37832 . . . . . . 7 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)))
9982, 97, 98mp2an 672 . . . . . 6 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4))
100 eqrabdioph 37867 . . . . . 6 ((4 ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4))
10156, 99, 89, 100mp3an 1572 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)
102 anrabdioph 37870 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4) ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4))
10375, 101, 102mp2an 672 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4)
10455, 103eqeltri 2846 . . 3 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)
10565rexfrabdioph 37885 . . 3 ((3 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3))
10626, 104, 105mp2an 672 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3)
10725, 106eqeltri 2846 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062  {crab 3065  Vcvv 3351  [wsbc 3587  cmpt 4863  cres 5251  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  1c1 10139   · cmul 10143  cmin 10468  2c2 11272  3c3 11273  4c4 11274  0cn0 11494  cz 11579  cuz 11888  ...cfz 12533  cexp 13067  mzPolycmzp 37811  Diophcdioph 37844   Xrm crmx 37990   Yrm crmy 37991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-prm 15593  df-numer 15650  df-denom 15651  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-mzpcl 37812  df-mzp 37813  df-dioph 37845  df-squarenn 37931  df-pell1qr 37932  df-pell14qr 37933  df-pell1234qr 37934  df-pellfund 37935  df-rmx 37992  df-rmy 37993
This theorem is referenced by:  expdiophlem2  38115
  Copyright terms: Public domain W3C validator