Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . 6
β’ ((π β (β0
βm (1...3)) β§ (πβ1) β
(β€β₯β2)) β (πβ1) β
(β€β₯β2)) |
2 | | elmapi 8839 |
. . . . . . . 8
β’ (π β (β0
βm (1...3)) β π:(1...3)βΆβ0) |
3 | | df-3 12272 |
. . . . . . . . . 10
β’ 3 = (2 +
1) |
4 | | ssid 4003 |
. . . . . . . . . 10
β’ (1...3)
β (1...3) |
5 | 3, 4 | jm2.27dlem5 41737 |
. . . . . . . . 9
β’ (1...2)
β (1...3) |
6 | | 2nn 12281 |
. . . . . . . . . 10
β’ 2 β
β |
7 | 6 | jm2.27dlem3 41735 |
. . . . . . . . 9
β’ 2 β
(1...2) |
8 | 5, 7 | sselii 3978 |
. . . . . . . 8
β’ 2 β
(1...3) |
9 | | ffvelcdm 7080 |
. . . . . . . 8
β’ ((π:(1...3)βΆβ0 β§ 2
β (1...3)) β (πβ2) β
β0) |
10 | 2, 8, 9 | sylancl 586 |
. . . . . . 7
β’ (π β (β0
βm (1...3)) β (πβ2) β
β0) |
11 | 10 | adantr 481 |
. . . . . 6
β’ ((π β (β0
βm (1...3)) β§ (πβ1) β
(β€β₯β2)) β (πβ2) β
β0) |
12 | | 3nn 12287 |
. . . . . . . . 9
β’ 3 β
β |
13 | 12 | jm2.27dlem3 41735 |
. . . . . . . 8
β’ 3 β
(1...3) |
14 | | ffvelcdm 7080 |
. . . . . . . 8
β’ ((π:(1...3)βΆβ0 β§ 3
β (1...3)) β (πβ3) β
β0) |
15 | 2, 13, 14 | sylancl 586 |
. . . . . . 7
β’ (π β (β0
βm (1...3)) β (πβ3) β
β0) |
16 | 15 | adantr 481 |
. . . . . 6
β’ ((π β (β0
βm (1...3)) β§ (πβ1) β
(β€β₯β2)) β (πβ3) β
β0) |
17 | | rmxdiophlem 41739 |
. . . . . 6
β’ (((πβ1) β
(β€β₯β2) β§ (πβ2) β β0 β§
(πβ3) β
β0) β ((πβ3) = ((πβ1) Xrm (πβ2)) β βπ β β0 (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
18 | 1, 11, 16, 17 | syl3anc 1371 |
. . . . 5
β’ ((π β (β0
βm (1...3)) β§ (πβ1) β
(β€β₯β2)) β ((πβ3) = ((πβ1) Xrm (πβ2)) β βπ β β0 (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
19 | 18 | pm5.32da 579 |
. . . 4
β’ (π β (β0
βm (1...3)) β (((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Xrm (πβ2))) β ((πβ1) β
(β€β₯β2) β§ βπ β β0 (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1)))) |
20 | | anass 469 |
. . . . . 6
β’ ((((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)
β ((πβ1) β
(β€β₯β2) β§ (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
21 | 20 | rexbii 3094 |
. . . . 5
β’
(βπ β
β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)
β βπ β
β0 ((πβ1) β
(β€β₯β2) β§ (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
22 | | r19.42v 3190 |
. . . . 5
β’
(βπ β
β0 ((πβ1) β
(β€β₯β2) β§ (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1))
β ((πβ1) β
(β€β₯β2) β§ βπ β β0 (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
23 | 21, 22 | bitr2i 275 |
. . . 4
β’ (((πβ1) β
(β€β₯β2) β§ βπ β β0 (π = ((πβ1) Yrm (πβ2)) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1))
β βπ β
β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1)) |
24 | 19, 23 | bitrdi 286 |
. . 3
β’ (π β (β0
βm (1...3)) β (((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Xrm (πβ2))) β βπ β β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1))) |
25 | 24 | rabbiia 3436 |
. 2
β’ {π β (β0
βm (1...3)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Xrm (πβ2)))} = {π β (β0
βm (1...3)) β£ βπ β β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
1)} |
26 | | 3nn0 12486 |
. . 3
β’ 3 β
β0 |
27 | | vex 3478 |
. . . . . . 7
β’ π β V |
28 | 27 | resex 6027 |
. . . . . 6
β’ (π βΎ (1...3)) β
V |
29 | | fvex 6901 |
. . . . . 6
β’ (πβ4) β
V |
30 | | df-2 12271 |
. . . . . . . . . . . . 13
β’ 2 = (1 +
1) |
31 | 30, 5 | jm2.27dlem5 41737 |
. . . . . . . . . . . 12
β’ (1...1)
β (1...3) |
32 | | 1nn 12219 |
. . . . . . . . . . . . 13
β’ 1 β
β |
33 | 32 | jm2.27dlem3 41735 |
. . . . . . . . . . . 12
β’ 1 β
(1...1) |
34 | 31, 33 | sselii 3978 |
. . . . . . . . . . 11
β’ 1 β
(1...3) |
35 | 34 | jm2.27dlem1 41733 |
. . . . . . . . . 10
β’ (π = (π βΎ (1...3)) β (πβ1) = (πβ1)) |
36 | 35 | eleq1d 2818 |
. . . . . . . . 9
β’ (π = (π βΎ (1...3)) β ((πβ1) β
(β€β₯β2) β (πβ1) β
(β€β₯β2))) |
37 | 36 | adantr 481 |
. . . . . . . 8
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((πβ1) β
(β€β₯β2) β (πβ1) β
(β€β₯β2))) |
38 | | simpr 485 |
. . . . . . . . 9
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β π = (πβ4)) |
39 | 8 | jm2.27dlem1 41733 |
. . . . . . . . . . 11
β’ (π = (π βΎ (1...3)) β (πβ2) = (πβ2)) |
40 | 35, 39 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π = (π βΎ (1...3)) β ((πβ1) Yrm (πβ2)) = ((πβ1) Yrm (πβ2))) |
41 | 40 | adantr 481 |
. . . . . . . . 9
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((πβ1) Yrm (πβ2)) = ((πβ1) Yrm (πβ2))) |
42 | 38, 41 | eqeq12d 2748 |
. . . . . . . 8
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β (π = ((πβ1) Yrm (πβ2)) β (πβ4) = ((πβ1) Yrm (πβ2)))) |
43 | 37, 42 | anbi12d 631 |
. . . . . . 7
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β ((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))))) |
44 | 13 | jm2.27dlem1 41733 |
. . . . . . . . . . 11
β’ (π = (π βΎ (1...3)) β (πβ3) = (πβ3)) |
45 | 44 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = (π βΎ (1...3)) β ((πβ3)β2) = ((πβ3)β2)) |
46 | 45 | adantr 481 |
. . . . . . . . 9
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((πβ3)β2) = ((πβ3)β2)) |
47 | 35 | oveq1d 7420 |
. . . . . . . . . . 11
β’ (π = (π βΎ (1...3)) β ((πβ1)β2) = ((πβ1)β2)) |
48 | 47 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = (π βΎ (1...3)) β (((πβ1)β2) β 1) =
(((πβ1)β2)
β 1)) |
49 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π = (πβ4) β (πβ2) = ((πβ4)β2)) |
50 | 48, 49 | oveqan12d 7424 |
. . . . . . . . 9
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((((πβ1)β2) β 1) Β· (πβ2)) = ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) |
51 | 46, 50 | oveq12d 7423 |
. . . . . . . 8
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) =
(((πβ3)β2)
β ((((πβ1)β2) β 1) Β· ((πβ4)β2)))) |
52 | 51 | eqeq1d 2734 |
. . . . . . 7
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1
β (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1)) |
53 | 43, 52 | anbi12d 631 |
. . . . . 6
β’ ((π = (π βΎ (1...3)) β§ π = (πβ4)) β ((((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)
β (((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1))) |
54 | 28, 29, 53 | sbc2ie 3859 |
. . . . 5
β’
([(π βΎ
(1...3)) / π][(πβ4) / π](((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)
β (((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1)) |
55 | 54 | rabbii 3438 |
. . . 4
β’ {π β (β0
βm (1...4)) β£ [(π βΎ (1...3)) / π][(πβ4) / π](((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)}
= {π β
(β0 βm (1...4)) β£ (((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1)} |
56 | | 4nn0 12487 |
. . . . . 6
β’ 4 β
β0 |
57 | | rmydioph 41738 |
. . . . . 6
β’ {π β (β0
βm (1...3)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Yrm (πβ2)))} β
(Diophβ3) |
58 | | simp1 1136 |
. . . . . . . . 9
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β (πβ1) = (πβ1)) |
59 | 58 | eleq1d 2818 |
. . . . . . . 8
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β ((πβ1) β
(β€β₯β2) β (πβ1) β
(β€β₯β2))) |
60 | | simp3 1138 |
. . . . . . . . 9
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β (πβ3) = (πβ4)) |
61 | | simp2 1137 |
. . . . . . . . . 10
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β (πβ2) = (πβ2)) |
62 | 58, 61 | oveq12d 7423 |
. . . . . . . . 9
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β ((πβ1) Yrm (πβ2)) = ((πβ1) Yrm (πβ2))) |
63 | 60, 62 | eqeq12d 2748 |
. . . . . . . 8
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β ((πβ3) = ((πβ1) Yrm (πβ2)) β (πβ4) = ((πβ1) Yrm (πβ2)))) |
64 | 59, 63 | anbi12d 631 |
. . . . . . 7
β’ (((πβ1) = (πβ1) β§ (πβ2) = (πβ2) β§ (πβ3) = (πβ4)) β (((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Yrm (πβ2))) β ((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))))) |
65 | | df-4 12273 |
. . . . . . . . . . 11
β’ 4 = (3 +
1) |
66 | | ssid 4003 |
. . . . . . . . . . 11
β’ (1...4)
β (1...4) |
67 | 65, 66 | jm2.27dlem5 41737 |
. . . . . . . . . 10
β’ (1...3)
β (1...4) |
68 | 3, 67 | jm2.27dlem5 41737 |
. . . . . . . . 9
β’ (1...2)
β (1...4) |
69 | 30, 68 | jm2.27dlem5 41737 |
. . . . . . . 8
β’ (1...1)
β (1...4) |
70 | 69, 33 | sselii 3978 |
. . . . . . 7
β’ 1 β
(1...4) |
71 | 68, 7 | sselii 3978 |
. . . . . . 7
β’ 2 β
(1...4) |
72 | | 4nn 12291 |
. . . . . . . 8
β’ 4 β
β |
73 | 72 | jm2.27dlem3 41735 |
. . . . . . 7
β’ 4 β
(1...4) |
74 | 64, 70, 71, 73 | rabren3dioph 41538 |
. . . . . 6
β’ ((4
β β0 β§ {π β (β0
βm (1...3)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Yrm (πβ2)))} β (Diophβ3)) β
{π β
(β0 βm (1...4)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2)))} β
(Diophβ4)) |
75 | 56, 57, 74 | mp2an 690 |
. . . . 5
β’ {π β (β0
βm (1...4)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2)))} β
(Diophβ4) |
76 | | ovex 7438 |
. . . . . . . . 9
β’ (1...4)
β V |
77 | 67, 13 | sselii 3978 |
. . . . . . . . 9
β’ 3 β
(1...4) |
78 | | mzpproj 41460 |
. . . . . . . . 9
β’ (((1...4)
β V β§ 3 β (1...4)) β (π β (β€ βm (1...4))
β¦ (πβ3)) β
(mzPolyβ(1...4))) |
79 | 76, 77, 78 | mp2an 690 |
. . . . . . . 8
β’ (π β (β€
βm (1...4)) β¦ (πβ3)) β
(mzPolyβ(1...4)) |
80 | | 2nn0 12485 |
. . . . . . . 8
β’ 2 β
β0 |
81 | | mzpexpmpt 41468 |
. . . . . . . 8
β’ (((π β (β€
βm (1...4)) β¦ (πβ3)) β (mzPolyβ(1...4))
β§ 2 β β0) β (π β (β€ βm (1...4))
β¦ ((πβ3)β2)) β
(mzPolyβ(1...4))) |
82 | 79, 80, 81 | mp2an 690 |
. . . . . . 7
β’ (π β (β€
βm (1...4)) β¦ ((πβ3)β2)) β
(mzPolyβ(1...4)) |
83 | | mzpproj 41460 |
. . . . . . . . . . 11
β’ (((1...4)
β V β§ 1 β (1...4)) β (π β (β€ βm (1...4))
β¦ (πβ1)) β
(mzPolyβ(1...4))) |
84 | 76, 70, 83 | mp2an 690 |
. . . . . . . . . 10
β’ (π β (β€
βm (1...4)) β¦ (πβ1)) β
(mzPolyβ(1...4)) |
85 | | mzpexpmpt 41468 |
. . . . . . . . . 10
β’ (((π β (β€
βm (1...4)) β¦ (πβ1)) β (mzPolyβ(1...4))
β§ 2 β β0) β (π β (β€ βm (1...4))
β¦ ((πβ1)β2)) β
(mzPolyβ(1...4))) |
86 | 84, 80, 85 | mp2an 690 |
. . . . . . . . 9
β’ (π β (β€
βm (1...4)) β¦ ((πβ1)β2)) β
(mzPolyβ(1...4)) |
87 | | 1z 12588 |
. . . . . . . . . 10
β’ 1 β
β€ |
88 | | mzpconstmpt 41463 |
. . . . . . . . . 10
β’ (((1...4)
β V β§ 1 β β€) β (π β (β€ βm (1...4))
β¦ 1) β (mzPolyβ(1...4))) |
89 | 76, 87, 88 | mp2an 690 |
. . . . . . . . 9
β’ (π β (β€
βm (1...4)) β¦ 1) β
(mzPolyβ(1...4)) |
90 | | mzpsubmpt 41466 |
. . . . . . . . 9
β’ (((π β (β€
βm (1...4)) β¦ ((πβ1)β2)) β
(mzPolyβ(1...4)) β§ (π β (β€ βm (1...4))
β¦ 1) β (mzPolyβ(1...4))) β (π β (β€ βm (1...4))
β¦ (((πβ1)β2) β 1)) β
(mzPolyβ(1...4))) |
91 | 86, 89, 90 | mp2an 690 |
. . . . . . . 8
β’ (π β (β€
βm (1...4)) β¦ (((πβ1)β2) β 1)) β
(mzPolyβ(1...4)) |
92 | | mzpproj 41460 |
. . . . . . . . . 10
β’ (((1...4)
β V β§ 4 β (1...4)) β (π β (β€ βm (1...4))
β¦ (πβ4)) β
(mzPolyβ(1...4))) |
93 | 76, 73, 92 | mp2an 690 |
. . . . . . . . 9
β’ (π β (β€
βm (1...4)) β¦ (πβ4)) β
(mzPolyβ(1...4)) |
94 | | mzpexpmpt 41468 |
. . . . . . . . 9
β’ (((π β (β€
βm (1...4)) β¦ (πβ4)) β (mzPolyβ(1...4))
β§ 2 β β0) β (π β (β€ βm (1...4))
β¦ ((πβ4)β2)) β
(mzPolyβ(1...4))) |
95 | 93, 80, 94 | mp2an 690 |
. . . . . . . 8
β’ (π β (β€
βm (1...4)) β¦ ((πβ4)β2)) β
(mzPolyβ(1...4)) |
96 | | mzpmulmpt 41465 |
. . . . . . . 8
β’ (((π β (β€
βm (1...4)) β¦ (((πβ1)β2) β 1)) β
(mzPolyβ(1...4)) β§ (π β (β€ βm (1...4))
β¦ ((πβ4)β2)) β
(mzPolyβ(1...4))) β (π β (β€ βm (1...4))
β¦ ((((πβ1)β2) β 1) Β· ((πβ4)β2))) β
(mzPolyβ(1...4))) |
97 | 91, 95, 96 | mp2an 690 |
. . . . . . 7
β’ (π β (β€
βm (1...4)) β¦ ((((πβ1)β2) β 1) Β· ((πβ4)β2))) β
(mzPolyβ(1...4)) |
98 | | mzpsubmpt 41466 |
. . . . . . 7
β’ (((π β (β€
βm (1...4)) β¦ ((πβ3)β2)) β
(mzPolyβ(1...4)) β§ (π β (β€ βm (1...4))
β¦ ((((πβ1)β2) β 1) Β· ((πβ4)β2))) β
(mzPolyβ(1...4))) β (π β (β€ βm (1...4))
β¦ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2)))) β
(mzPolyβ(1...4))) |
99 | 82, 97, 98 | mp2an 690 |
. . . . . 6
β’ (π β (β€
βm (1...4)) β¦ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2)))) β
(mzPolyβ(1...4)) |
100 | | eqrabdioph 41500 |
. . . . . 6
β’ ((4
β β0 β§ (π β (β€ βm (1...4))
β¦ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2)))) β
(mzPolyβ(1...4)) β§ (π β (β€ βm (1...4))
β¦ 1) β (mzPolyβ(1...4))) β {π β (β0
βm (1...4)) β£ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1} β
(Diophβ4)) |
101 | 56, 99, 89, 100 | mp3an 1461 |
. . . . 5
β’ {π β (β0
βm (1...4)) β£ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1} β
(Diophβ4) |
102 | | anrabdioph 41503 |
. . . . 5
β’ (({π β (β0
βm (1...4)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2)))} β (Diophβ4) β§
{π β
(β0 βm (1...4)) β£ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1} β
(Diophβ4)) β {π
β (β0 βm (1...4)) β£ (((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1)} β
(Diophβ4)) |
103 | 75, 101, 102 | mp2an 690 |
. . . 4
β’ {π β (β0
βm (1...4)) β£ (((πβ1) β
(β€β₯β2) β§ (πβ4) = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· ((πβ4)β2))) = 1)} β
(Diophβ4) |
104 | 55, 103 | eqeltri 2829 |
. . 3
β’ {π β (β0
βm (1...4)) β£ [(π βΎ (1...3)) / π][(πβ4) / π](((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)}
β (Diophβ4) |
105 | 65 | rexfrabdioph 41518 |
. . 3
β’ ((3
β β0 β§ {π β (β0
βm (1...4)) β£ [(π βΎ (1...3)) / π][(πβ4) / π](((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)}
β (Diophβ4)) β {π β (β0
βm (1...3)) β£ βπ β β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)}
β (Diophβ3)) |
106 | 26, 104, 105 | mp2an 690 |
. 2
β’ {π β (β0
βm (1...3)) β£ βπ β β0 (((πβ1) β
(β€β₯β2) β§ π = ((πβ1) Yrm (πβ2))) β§ (((πβ3)β2) β ((((πβ1)β2) β 1)
Β· (πβ2))) = 1)}
β (Diophβ3) |
107 | 25, 106 | eqeltri 2829 |
1
β’ {π β (β0
βm (1...3)) β£ ((πβ1) β
(β€β₯β2) β§ (πβ3) = ((πβ1) Xrm (πβ2)))} β
(Diophβ3) |