Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrabdioph Structured version   Visualization version   GIF version

Theorem rexrabdioph 41146
Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypotheses
Ref Expression
rexrabdioph.1 𝑀 = (𝑁 + 1)
rexrabdioph.2 (𝑣 = (π‘‘β€˜π‘€) β†’ (πœ“ ↔ πœ’))
rexrabdioph.3 (𝑒 = (𝑑 β†Ύ (1...𝑁)) β†’ (πœ’ ↔ πœ‘))
Assertion
Ref Expression
rexrabdioph ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} ∈ (Diophβ€˜π‘))
Distinct variable groups:   𝑑,𝑁,𝑒,𝑣   𝑑,𝑀,𝑒,𝑣   πœ‘,𝑒,𝑣   πœ“,𝑑   πœ’,𝑣
Allowed substitution hints:   πœ‘(𝑑)   πœ“(𝑣,𝑒)   πœ’(𝑒,𝑑)

Proof of Theorem rexrabdioph
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3411 . . . . . 6 {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“} = {π‘Ž ∣ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“)}
2 dfsbcq 3746 . . . . . . . . . . 11 (𝑏 = 𝑐 β†’ ([𝑏 / 𝑣][π‘Ž / 𝑒]πœ“ ↔ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
32cbvrexvw 3229 . . . . . . . . . 10 (βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“ ↔ βˆƒπ‘ ∈ β„•0 [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)
43anbi2i 624 . . . . . . . . 9 ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
5 r19.42v 3188 . . . . . . . . 9 (βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
64, 5bitr4i 278 . . . . . . . 8 ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
7 simpll 766 . . . . . . . . . . . . 13 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑁 ∈ β„•0)
8 simpr 486 . . . . . . . . . . . . 13 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ π‘Ž ∈ (β„•0 ↑m (1...𝑁)))
9 simplr 768 . . . . . . . . . . . . 13 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑐 ∈ β„•0)
10 rexrabdioph.1 . . . . . . . . . . . . . 14 𝑀 = (𝑁 + 1)
1110mapfzcons 41068 . . . . . . . . . . . . 13 ((𝑁 ∈ β„•0 ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑐 ∈ β„•0) β†’ (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) ∈ (β„•0 ↑m (1...𝑀)))
127, 8, 9, 11syl3anc 1372 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) ∈ (β„•0 ↑m (1...𝑀)))
1312adantrr 716 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)) β†’ (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) ∈ (β„•0 ↑m (1...𝑀)))
1410mapfzcons2 41071 . . . . . . . . . . . . . . . 16 ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑐 ∈ β„•0) β†’ ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) = 𝑐)
158, 9, 14syl2anc 585 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) = 𝑐)
1615eqcomd 2743 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑐 = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€))
1710mapfzcons1 41069 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) β†’ ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) = π‘Ž)
1817adantl 483 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) = π‘Ž)
1918eqcomd 2743 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ π‘Ž = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)))
2019sbceq1d 3749 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ ([π‘Ž / 𝑒]πœ“ ↔ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“))
2116, 20sbceqbid 3751 . . . . . . . . . . . . 13 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ ([𝑐 / 𝑣][π‘Ž / 𝑒]πœ“ ↔ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“))
2221biimpd 228 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ π‘Ž ∈ (β„•0 ↑m (1...𝑁))) β†’ ([𝑐 / 𝑣][π‘Ž / 𝑒]πœ“ β†’ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“))
2322impr 456 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)) β†’ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“)
2419adantrr 716 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)) β†’ π‘Ž = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)))
25 fveq1 6846 . . . . . . . . . . . . . 14 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ (π‘β€˜π‘€) = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€))
26 reseq1 5936 . . . . . . . . . . . . . . 15 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ (𝑏 β†Ύ (1...𝑁)) = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)))
2726sbceq1d 3749 . . . . . . . . . . . . . 14 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ ([(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ↔ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“))
2825, 27sbceqbid 3751 . . . . . . . . . . . . 13 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ↔ [((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“))
2926eqeq2d 2748 . . . . . . . . . . . . 13 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ (π‘Ž = (𝑏 β†Ύ (1...𝑁)) ↔ π‘Ž = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁))))
3028, 29anbi12d 632 . . . . . . . . . . . 12 (𝑏 = (π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†’ (([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁))) ↔ ([((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)))))
3130rspcev 3584 . . . . . . . . . . 11 (((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) ∈ (β„•0 ↑m (1...𝑀)) ∧ ([((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©})β€˜π‘€) / 𝑣][((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = ((π‘Ž βˆͺ {βŸ¨π‘€, π‘βŸ©}) β†Ύ (1...𝑁)))) β†’ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁))))
3213, 23, 24, 31syl12anc 836 . . . . . . . . . 10 (((𝑁 ∈ β„•0 ∧ 𝑐 ∈ β„•0) ∧ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)) β†’ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁))))
3332rexlimdva2 3155 . . . . . . . . 9 (𝑁 ∈ β„•0 β†’ (βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“) β†’ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))))
34 elmapi 8794 . . . . . . . . . . . . 13 (𝑏 ∈ (β„•0 ↑m (1...𝑀)) β†’ 𝑏:(1...𝑀)βŸΆβ„•0)
35 nn0p1nn 12459 . . . . . . . . . . . . . . 15 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•)
3610, 35eqeltrid 2842 . . . . . . . . . . . . . 14 (𝑁 ∈ β„•0 β†’ 𝑀 ∈ β„•)
37 elfz1end 13478 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• ↔ 𝑀 ∈ (1...𝑀))
3836, 37sylib 217 . . . . . . . . . . . . 13 (𝑁 ∈ β„•0 β†’ 𝑀 ∈ (1...𝑀))
39 ffvelcdm 7037 . . . . . . . . . . . . 13 ((𝑏:(1...𝑀)βŸΆβ„•0 ∧ 𝑀 ∈ (1...𝑀)) β†’ (π‘β€˜π‘€) ∈ β„•0)
4034, 38, 39syl2anr 598 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) β†’ (π‘β€˜π‘€) ∈ β„•0)
4140adantr 482 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ (π‘β€˜π‘€) ∈ β„•0)
42 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ π‘Ž = (𝑏 β†Ύ (1...𝑁)))
4310mapfzcons1cl 41070 . . . . . . . . . . . . 13 (𝑏 ∈ (β„•0 ↑m (1...𝑀)) β†’ (𝑏 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
4443ad2antlr 726 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ (𝑏 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
4542, 44eqeltrd 2838 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ π‘Ž ∈ (β„•0 ↑m (1...𝑁)))
46 simprl 770 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ [(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“)
47 dfsbcq 3746 . . . . . . . . . . . . . 14 (π‘Ž = (𝑏 β†Ύ (1...𝑁)) β†’ ([π‘Ž / 𝑒]πœ“ ↔ [(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“))
4847sbcbidv 3803 . . . . . . . . . . . . 13 (π‘Ž = (𝑏 β†Ύ (1...𝑁)) β†’ ([(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“ ↔ [(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“))
4948ad2antll 728 . . . . . . . . . . . 12 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ ([(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“ ↔ [(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“))
5046, 49mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ [(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“)
51 dfsbcq 3746 . . . . . . . . . . . . 13 (𝑐 = (π‘β€˜π‘€) β†’ ([𝑐 / 𝑣][π‘Ž / 𝑒]πœ“ ↔ [(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“))
5251anbi2d 630 . . . . . . . . . . . 12 (𝑐 = (π‘β€˜π‘€) β†’ ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“)))
5352rspcev 3584 . . . . . . . . . . 11 (((π‘β€˜π‘€) ∈ β„•0 ∧ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [(π‘β€˜π‘€) / 𝑣][π‘Ž / 𝑒]πœ“)) β†’ βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
5441, 45, 50, 53syl12anc 836 . . . . . . . . . 10 (((𝑁 ∈ β„•0 ∧ 𝑏 ∈ (β„•0 ↑m (1...𝑀))) ∧ ([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))) β†’ βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“))
5554rexlimdva2 3155 . . . . . . . . 9 (𝑁 ∈ β„•0 β†’ (βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁))) β†’ βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“)))
5633, 55impbid 211 . . . . . . . 8 (𝑁 ∈ β„•0 β†’ (βˆƒπ‘ ∈ β„•0 (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))))
576, 56bitrid 283 . . . . . . 7 (𝑁 ∈ β„•0 β†’ ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“) ↔ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))))
5857abbidv 2806 . . . . . 6 (𝑁 ∈ β„•0 β†’ {π‘Ž ∣ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“)} = {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))})
591, 58eqtrid 2789 . . . . 5 (𝑁 ∈ β„•0 β†’ {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“} = {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))})
60 nfcv 2908 . . . . . 6 Ⅎ𝑒(β„•0 ↑m (1...𝑁))
61 nfcv 2908 . . . . . 6 β„²π‘Ž(β„•0 ↑m (1...𝑁))
62 nfv 1918 . . . . . 6 β„²π‘Žβˆƒπ‘£ ∈ β„•0 πœ“
63 nfcv 2908 . . . . . . 7 Ⅎ𝑒ℕ0
64 nfcv 2908 . . . . . . . 8 Ⅎ𝑒𝑏
65 nfsbc1v 3764 . . . . . . . 8 Ⅎ𝑒[π‘Ž / 𝑒]πœ“
6664, 65nfsbcw 3766 . . . . . . 7 Ⅎ𝑒[𝑏 / 𝑣][π‘Ž / 𝑒]πœ“
6763, 66nfrexw 3299 . . . . . 6 β„²π‘’βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“
68 sbceq1a 3755 . . . . . . . 8 (𝑒 = π‘Ž β†’ (πœ“ ↔ [π‘Ž / 𝑒]πœ“))
6968rexbidv 3176 . . . . . . 7 (𝑒 = π‘Ž β†’ (βˆƒπ‘£ ∈ β„•0 πœ“ ↔ βˆƒπ‘£ ∈ β„•0 [π‘Ž / 𝑒]πœ“))
70 nfv 1918 . . . . . . . 8 Ⅎ𝑏[π‘Ž / 𝑒]πœ“
71 nfsbc1v 3764 . . . . . . . 8 Ⅎ𝑣[𝑏 / 𝑣][π‘Ž / 𝑒]πœ“
72 sbceq1a 3755 . . . . . . . 8 (𝑣 = 𝑏 β†’ ([π‘Ž / 𝑒]πœ“ ↔ [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“))
7370, 71, 72cbvrexw 3293 . . . . . . 7 (βˆƒπ‘£ ∈ β„•0 [π‘Ž / 𝑒]πœ“ ↔ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“)
7469, 73bitrdi 287 . . . . . 6 (𝑒 = π‘Ž β†’ (βˆƒπ‘£ ∈ β„•0 πœ“ ↔ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“))
7560, 61, 62, 67, 74cbvrabw 3442 . . . . 5 {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} = {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘ ∈ β„•0 [𝑏 / 𝑣][π‘Ž / 𝑒]πœ“}
76 fveq1 6846 . . . . . . . 8 (𝑑 = 𝑏 β†’ (π‘‘β€˜π‘€) = (π‘β€˜π‘€))
77 reseq1 5936 . . . . . . . . 9 (𝑑 = 𝑏 β†’ (𝑑 β†Ύ (1...𝑁)) = (𝑏 β†Ύ (1...𝑁)))
7877sbceq1d 3749 . . . . . . . 8 (𝑑 = 𝑏 β†’ ([(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“ ↔ [(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“))
7976, 78sbceqbid 3751 . . . . . . 7 (𝑑 = 𝑏 β†’ ([(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“ ↔ [(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“))
8079rexrab 3659 . . . . . 6 (βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“}π‘Ž = (𝑏 β†Ύ (1...𝑁)) ↔ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁))))
8180abbii 2807 . . . . 5 {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“}π‘Ž = (𝑏 β†Ύ (1...𝑁))} = {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑀))([(π‘β€˜π‘€) / 𝑣][(𝑏 β†Ύ (1...𝑁)) / 𝑒]πœ“ ∧ π‘Ž = (𝑏 β†Ύ (1...𝑁)))}
8259, 75, 813eqtr4g 2802 . . . 4 (𝑁 ∈ β„•0 β†’ {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} = {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“}π‘Ž = (𝑏 β†Ύ (1...𝑁))})
83 fvex 6860 . . . . . . . 8 (π‘‘β€˜π‘€) ∈ V
84 vex 3452 . . . . . . . . 9 𝑑 ∈ V
8584resex 5990 . . . . . . . 8 (𝑑 β†Ύ (1...𝑁)) ∈ V
86 rexrabdioph.2 . . . . . . . . 9 (𝑣 = (π‘‘β€˜π‘€) β†’ (πœ“ ↔ πœ’))
87 rexrabdioph.3 . . . . . . . . 9 (𝑒 = (𝑑 β†Ύ (1...𝑁)) β†’ (πœ’ ↔ πœ‘))
8886, 87sylan9bb 511 . . . . . . . 8 ((𝑣 = (π‘‘β€˜π‘€) ∧ 𝑒 = (𝑑 β†Ύ (1...𝑁))) β†’ (πœ“ ↔ πœ‘))
8983, 85, 88sbc2ie 3827 . . . . . . 7 ([(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“ ↔ πœ‘)
9089rabbii 3416 . . . . . 6 {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“} = {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}
9190rexeqi 3315 . . . . 5 (βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“}π‘Ž = (𝑏 β†Ύ (1...𝑁)) ↔ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁)))
9291abbii 2807 . . . 4 {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ [(π‘‘β€˜π‘€) / 𝑣][(𝑑 β†Ύ (1...𝑁)) / 𝑒]πœ“}π‘Ž = (𝑏 β†Ύ (1...𝑁))} = {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁))}
9382, 92eqtrdi 2793 . . 3 (𝑁 ∈ β„•0 β†’ {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} = {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁))})
9493adantr 482 . 2 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} = {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁))})
95 simpl 484 . . 3 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ 𝑁 ∈ β„•0)
96 nn0z 12531 . . . . . 6 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„€)
97 uzid 12785 . . . . . 6 (𝑁 ∈ β„€ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘))
98 peano2uz 12833 . . . . . 6 (𝑁 ∈ (β„€β‰₯β€˜π‘) β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘))
9996, 97, 983syl 18 . . . . 5 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘))
10010, 99eqeltrid 2842 . . . 4 (𝑁 ∈ β„•0 β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘))
101100adantr 482 . . 3 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘))
102 simpr 486 . . 3 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€))
103 diophrex 41127 . . 3 ((𝑁 ∈ β„•0 ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘) ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁))} ∈ (Diophβ€˜π‘))
10495, 101, 102, 103syl3anc 1372 . 2 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {π‘Ž ∣ βˆƒπ‘ ∈ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘}π‘Ž = (𝑏 β†Ύ (1...𝑁))} ∈ (Diophβ€˜π‘))
10594, 104eqeltrd 2838 1 ((𝑁 ∈ β„•0 ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑀)) ∣ πœ‘} ∈ (Diophβ€˜π‘€)) β†’ {𝑒 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘£ ∈ β„•0 πœ“} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {cab 2714  βˆƒwrex 3074  {crab 3410  [wsbc 3744   βˆͺ cun 3913  {csn 4591  βŸ¨cop 4597   β†Ύ cres 5640  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362   ↑m cmap 8772  1c1 11059   + caddc 11061  β„•cn 12160  β„•0cn0 12420  β„€cz 12506  β„€β‰₯cuz 12770  ...cfz 13431  Diophcdioph 41107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238  df-mzpcl 41075  df-mzp 41076  df-dioph 41108
This theorem is referenced by:  rexfrabdioph  41147  elnn0rabdioph  41155  dvdsrabdioph  41162
  Copyright terms: Public domain W3C validator