Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrabdioph Structured version   Visualization version   GIF version

Theorem rexrabdioph 40208
Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypotheses
Ref Expression
rexrabdioph.1 𝑀 = (𝑁 + 1)
rexrabdioph.2 (𝑣 = (𝑡𝑀) → (𝜓𝜒))
rexrabdioph.3 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒𝜑))
Assertion
Ref Expression
rexrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢,𝑣   𝑡,𝑀,𝑢,𝑣   𝜑,𝑢,𝑣   𝜓,𝑡   𝜒,𝑣
Allowed substitution hints:   𝜑(𝑡)   𝜓(𝑣,𝑢)   𝜒(𝑢,𝑡)

Proof of Theorem rexrabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3062 . . . . . 6 {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)}
2 dfsbcq 3682 . . . . . . . . . . 11 (𝑏 = 𝑐 → ([𝑏 / 𝑣][𝑎 / 𝑢]𝜓[𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
32cbvrexvw 3350 . . . . . . . . . 10 (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓 ↔ ∃𝑐 ∈ ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)
43anbi2i 626 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑐 ∈ ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
5 r19.42v 3254 . . . . . . . . 9 (∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑐 ∈ ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
64, 5bitr4i 281 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
7 simpll 767 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → 𝑁 ∈ ℕ0)
8 simpr 488 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → 𝑎 ∈ (ℕ0m (1...𝑁)))
9 simplr 769 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → 𝑐 ∈ ℕ0)
10 rexrabdioph.1 . . . . . . . . . . . . . 14 𝑀 = (𝑁 + 1)
1110mapfzcons 40130 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑎 ∈ (ℕ0m (1...𝑁)) ∧ 𝑐 ∈ ℕ0) → (𝑎 ∪ {⟨𝑀, 𝑐⟩}) ∈ (ℕ0m (1...𝑀)))
127, 8, 9, 11syl3anc 1372 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → (𝑎 ∪ {⟨𝑀, 𝑐⟩}) ∈ (ℕ0m (1...𝑀)))
1312adantrr 717 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → (𝑎 ∪ {⟨𝑀, 𝑐⟩}) ∈ (ℕ0m (1...𝑀)))
1410mapfzcons2 40133 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ 𝑐 ∈ ℕ0) → ((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) = 𝑐)
158, 9, 14syl2anc 587 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → ((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) = 𝑐)
1615eqcomd 2744 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → 𝑐 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀))
1710mapfzcons1 40131 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (ℕ0m (1...𝑁)) → ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) = 𝑎)
1817adantl 485 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) = 𝑎)
1918eqcomd 2744 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → 𝑎 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)))
2019sbceq1d 3685 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → ([𝑎 / 𝑢]𝜓[((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓))
2116, 20sbceqbid 3687 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓[((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓))
2221biimpd 232 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ 𝑎 ∈ (ℕ0m (1...𝑁))) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓[((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓))
2322impr 458 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → [((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓)
2419adantrr 717 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → 𝑎 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)))
25 fveq1 6673 . . . . . . . . . . . . . 14 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → (𝑏𝑀) = ((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀))
26 reseq1 5819 . . . . . . . . . . . . . . 15 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → (𝑏 ↾ (1...𝑁)) = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)))
2726sbceq1d 3685 . . . . . . . . . . . . . 14 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → ([(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓[((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓))
2825, 27sbceqbid 3687 . . . . . . . . . . . . 13 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓[((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓))
2926eqeq2d 2749 . . . . . . . . . . . . 13 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁))))
3028, 29anbi12d 634 . . . . . . . . . . . 12 (𝑏 = (𝑎 ∪ {⟨𝑀, 𝑐⟩}) → (([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ([((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)))))
3130rspcev 3526 . . . . . . . . . . 11 (((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ∈ (ℕ0m (1...𝑀)) ∧ ([((𝑎 ∪ {⟨𝑀, 𝑐⟩})‘𝑀) / 𝑣][((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = ((𝑎 ∪ {⟨𝑀, 𝑐⟩}) ↾ (1...𝑁)))) → ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁))))
3213, 23, 24, 31syl12anc 836 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑐 ∈ ℕ0) ∧ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁))))
3332rexlimdva2 3197 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) → ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))))
34 elmapi 8459 . . . . . . . . . . . . 13 (𝑏 ∈ (ℕ0m (1...𝑀)) → 𝑏:(1...𝑀)⟶ℕ0)
35 nn0p1nn 12015 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
3610, 35eqeltrid 2837 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
37 elfz1end 13028 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
3836, 37sylib 221 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
39 ffvelrn 6859 . . . . . . . . . . . . 13 ((𝑏:(1...𝑀)⟶ℕ0𝑀 ∈ (1...𝑀)) → (𝑏𝑀) ∈ ℕ0)
4034, 38, 39syl2anr 600 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) → (𝑏𝑀) ∈ ℕ0)
4140adantr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → (𝑏𝑀) ∈ ℕ0)
42 simprr 773 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → 𝑎 = (𝑏 ↾ (1...𝑁)))
4310mapfzcons1cl 40132 . . . . . . . . . . . . 13 (𝑏 ∈ (ℕ0m (1...𝑀)) → (𝑏 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
4443ad2antlr 727 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → (𝑏 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
4542, 44eqeltrd 2833 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → 𝑎 ∈ (ℕ0m (1...𝑁)))
46 simprl 771 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → [(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)
47 dfsbcq 3682 . . . . . . . . . . . . . 14 (𝑎 = (𝑏 ↾ (1...𝑁)) → ([𝑎 / 𝑢]𝜓[(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓))
4847sbcbidv 3736 . . . . . . . . . . . . 13 (𝑎 = (𝑏 ↾ (1...𝑁)) → ([(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓[(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓))
4948ad2antll 729 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → ([(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓[(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓))
5046, 49mpbird 260 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → [(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓)
51 dfsbcq 3682 . . . . . . . . . . . . 13 (𝑐 = (𝑏𝑀) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓[(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓))
5251anbi2d 632 . . . . . . . . . . . 12 (𝑐 = (𝑏𝑀) → ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓)))
5352rspcev 3526 . . . . . . . . . . 11 (((𝑏𝑀) ∈ ℕ0 ∧ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [(𝑏𝑀) / 𝑣][𝑎 / 𝑢]𝜓)) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
5441, 45, 50, 53syl12anc 836 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑏 ∈ (ℕ0m (1...𝑀))) ∧ ([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))
5554rexlimdva2 3197 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁))) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)))
5633, 55impbid 215 . . . . . . . 8 (𝑁 ∈ ℕ0 → (∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))))
576, 56syl5bb 286 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))))
5857abbidv 2802 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))})
591, 58syl5eq 2785 . . . . 5 (𝑁 ∈ ℕ0 → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))})
60 nfcv 2899 . . . . . 6 𝑢(ℕ0m (1...𝑁))
61 nfcv 2899 . . . . . 6 𝑎(ℕ0m (1...𝑁))
62 nfv 1921 . . . . . 6 𝑎𝑣 ∈ ℕ0 𝜓
63 nfcv 2899 . . . . . . 7 𝑢0
64 nfcv 2899 . . . . . . . 8 𝑢𝑏
65 nfsbc1v 3700 . . . . . . . 8 𝑢[𝑎 / 𝑢]𝜓
6664, 65nfsbcw 3702 . . . . . . 7 𝑢[𝑏 / 𝑣][𝑎 / 𝑢]𝜓
6763, 66nfrex 3219 . . . . . 6 𝑢𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓
68 sbceq1a 3691 . . . . . . . 8 (𝑢 = 𝑎 → (𝜓[𝑎 / 𝑢]𝜓))
6968rexbidv 3207 . . . . . . 7 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜓 ↔ ∃𝑣 ∈ ℕ0 [𝑎 / 𝑢]𝜓))
70 nfv 1921 . . . . . . . 8 𝑏[𝑎 / 𝑢]𝜓
71 nfsbc1v 3700 . . . . . . . 8 𝑣[𝑏 / 𝑣][𝑎 / 𝑢]𝜓
72 sbceq1a 3691 . . . . . . . 8 (𝑣 = 𝑏 → ([𝑎 / 𝑢]𝜓[𝑏 / 𝑣][𝑎 / 𝑢]𝜓))
7370, 71, 72cbvrexw 3341 . . . . . . 7 (∃𝑣 ∈ ℕ0 [𝑎 / 𝑢]𝜓 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)
7469, 73bitrdi 290 . . . . . 6 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜓 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓))
7560, 61, 62, 67, 74cbvrabw 3391 . . . . 5 {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓}
76 fveq1 6673 . . . . . . . 8 (𝑡 = 𝑏 → (𝑡𝑀) = (𝑏𝑀))
77 reseq1 5819 . . . . . . . . 9 (𝑡 = 𝑏 → (𝑡 ↾ (1...𝑁)) = (𝑏 ↾ (1...𝑁)))
7877sbceq1d 3685 . . . . . . . 8 (𝑡 = 𝑏 → ([(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓[(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓))
7976, 78sbceqbid 3687 . . . . . . 7 (𝑡 = 𝑏 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓[(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓))
8079rexrab 3595 . . . . . 6 (∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁))))
8180abbii 2803 . . . . 5 {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑀))([(𝑏𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓𝑎 = (𝑏 ↾ (1...𝑁)))}
8259, 75, 813eqtr4g 2798 . . . 4 (𝑁 ∈ ℕ0 → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))})
83 fvex 6687 . . . . . . . 8 (𝑡𝑀) ∈ V
84 vex 3402 . . . . . . . . 9 𝑡 ∈ V
8584resex 5873 . . . . . . . 8 (𝑡 ↾ (1...𝑁)) ∈ V
86 rexrabdioph.2 . . . . . . . . 9 (𝑣 = (𝑡𝑀) → (𝜓𝜒))
87 rexrabdioph.3 . . . . . . . . 9 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒𝜑))
8886, 87sylan9bb 513 . . . . . . . 8 ((𝑣 = (𝑡𝑀) ∧ 𝑢 = (𝑡 ↾ (1...𝑁))) → (𝜓𝜑))
8983, 85, 88sbc2ie 3758 . . . . . . 7 ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓𝜑)
9089rabbii 3374 . . . . . 6 {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓} = {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}
9190rexeqi 3315 . . . . 5 (∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁)))
9291abbii 2803 . . . 4 {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))}
9382, 92eqtrdi 2789 . . 3 (𝑁 ∈ ℕ0 → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))})
9493adantr 484 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))})
95 simpl 486 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → 𝑁 ∈ ℕ0)
96 nn0z 12086 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
97 uzid 12339 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
98 peano2uz 12383 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
9996, 97, 983syl 18 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ𝑁))
10010, 99eqeltrid 2837 . . . 4 (𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁))
101100adantr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → 𝑀 ∈ (ℤ𝑁))
102 simpr 488 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀))
103 diophrex 40189 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
10495, 101, 102, 103syl3anc 1372 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
10594, 104eqeltrd 2833 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2716  wrex 3054  {crab 3057  [wsbc 3680  cun 3841  {csn 4516  cop 4522  cres 5527  wf 6335  cfv 6339  (class class class)co 7170  m cmap 8437  1c1 10616   + caddc 10618  cn 11716  0cn0 11976  cz 12062  cuz 12324  ...cfz 12981  Diophcdioph 40169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-hash 13783  df-mzpcl 40137  df-mzp 40138  df-dioph 40170
This theorem is referenced by:  rexfrabdioph  40209  elnn0rabdioph  40217  dvdsrabdioph  40224
  Copyright terms: Public domain W3C validator