| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-rab 3436 | . . . . . 6
⊢ {𝑎 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓} = {𝑎 ∣ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)} | 
| 2 |  | dfsbcq 3789 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑐 → ([𝑏 / 𝑣][𝑎 / 𝑢]𝜓 ↔ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 3 | 2 | cbvrexvw 3237 | . . . . . . . . . 10
⊢
(∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓 ↔ ∃𝑐 ∈ ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) | 
| 4 | 3 | anbi2i 623 | . . . . . . . . 9
⊢ ((𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑐 ∈
ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 5 |  | r19.42v 3190 | . . . . . . . . 9
⊢
(∃𝑐 ∈
ℕ0 (𝑎
∈ (ℕ0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑐 ∈
ℕ0 [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 6 | 4, 5 | bitr4i 278 | . . . . . . . 8
⊢ ((𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 7 |  | simpll 766 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → 𝑁 ∈
ℕ0) | 
| 8 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → 𝑎 ∈ (ℕ0
↑m (1...𝑁))) | 
| 9 |  | simplr 768 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → 𝑐 ∈ ℕ0) | 
| 10 |  | rexrabdioph.1 | . . . . . . . . . . . . . 14
⊢ 𝑀 = (𝑁 + 1) | 
| 11 | 10 | mapfzcons 42732 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑎 ∈
(ℕ0 ↑m (1...𝑁)) ∧ 𝑐 ∈ ℕ0) → (𝑎 ∪ {〈𝑀, 𝑐〉}) ∈ (ℕ0
↑m (1...𝑀))) | 
| 12 | 7, 8, 9, 11 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → (𝑎 ∪ {〈𝑀, 𝑐〉}) ∈ (ℕ0
↑m (1...𝑀))) | 
| 13 | 12 | adantrr 717 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → (𝑎 ∪ {〈𝑀, 𝑐〉}) ∈ (ℕ0
↑m (1...𝑀))) | 
| 14 | 10 | mapfzcons2 42735 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ 𝑐 ∈
ℕ0) → ((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) = 𝑐) | 
| 15 | 8, 9, 14 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → ((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) = 𝑐) | 
| 16 | 15 | eqcomd 2742 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → 𝑐 = ((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀)) | 
| 17 | 10 | mapfzcons1 42733 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
→ ((𝑎 ∪
{〈𝑀, 𝑐〉}) ↾ (1...𝑁)) = 𝑎) | 
| 18 | 17 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) = 𝑎) | 
| 19 | 18 | eqcomd 2742 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → 𝑎 = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁))) | 
| 20 | 19 | sbceq1d 3792 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → ([𝑎 / 𝑢]𝜓 ↔ [((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 21 | 16, 20 | sbceqbid 3794 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓 ↔ [((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 22 | 21 | biimpd 229 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ 𝑎 ∈ (ℕ0
↑m (1...𝑁))) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓 → [((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 23 | 22 | impr 454 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → [((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓) | 
| 24 | 19 | adantrr 717 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → 𝑎 = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁))) | 
| 25 |  | fveq1 6904 | . . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → (𝑏‘𝑀) = ((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀)) | 
| 26 |  | reseq1 5990 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → (𝑏 ↾ (1...𝑁)) = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁))) | 
| 27 | 26 | sbceq1d 3792 | . . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → ([(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ↔ [((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 28 | 25, 27 | sbceqbid 3794 | . . . . . . . . . . . . 13
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ↔ [((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 29 | 26 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)))) | 
| 30 | 28, 29 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑏 = (𝑎 ∪ {〈𝑀, 𝑐〉}) → (([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ([((𝑎 ∪ {〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁))))) | 
| 31 | 30 | rspcev 3621 | . . . . . . . . . . 11
⊢ (((𝑎 ∪ {〈𝑀, 𝑐〉}) ∈ (ℕ0
↑m (1...𝑀))
∧ ([((𝑎 ∪
{〈𝑀, 𝑐〉})‘𝑀) / 𝑣][((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = ((𝑎 ∪ {〈𝑀, 𝑐〉}) ↾ (1...𝑁)))) → ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) | 
| 32 | 13, 23, 24, 31 | syl12anc 836 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑐 ∈
ℕ0) ∧ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) → ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) | 
| 33 | 32 | rexlimdva2 3156 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (∃𝑐 ∈
ℕ0 (𝑎
∈ (ℕ0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) → ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))) | 
| 34 |  | elmapi 8890 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑀))
→ 𝑏:(1...𝑀)⟶ℕ0) | 
| 35 |  | nn0p1nn 12567 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) | 
| 36 | 10, 35 | eqeltrid 2844 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ) | 
| 37 |  | elfz1end 13595 | . . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀)) | 
| 38 | 36, 37 | sylib 218 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈ (1...𝑀)) | 
| 39 |  | ffvelcdm 7100 | . . . . . . . . . . . . 13
⊢ ((𝑏:(1...𝑀)⟶ℕ0 ∧ 𝑀 ∈ (1...𝑀)) → (𝑏‘𝑀) ∈
ℕ0) | 
| 40 | 34, 38, 39 | syl2anr 597 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) → (𝑏‘𝑀) ∈
ℕ0) | 
| 41 | 40 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → (𝑏‘𝑀) ∈
ℕ0) | 
| 42 |  | simprr 772 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → 𝑎 = (𝑏 ↾ (1...𝑁))) | 
| 43 | 10 | mapfzcons1cl 42734 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑀))
→ (𝑏 ↾
(1...𝑁)) ∈
(ℕ0 ↑m (1...𝑁))) | 
| 44 | 43 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → (𝑏 ↾ (1...𝑁)) ∈ (ℕ0
↑m (1...𝑁))) | 
| 45 | 42, 44 | eqeltrd 2840 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → 𝑎 ∈ (ℕ0
↑m (1...𝑁))) | 
| 46 |  | simprl 770 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → [(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓) | 
| 47 |  | dfsbcq 3789 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ↾ (1...𝑁)) → ([𝑎 / 𝑢]𝜓 ↔ [(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 48 | 47 | sbcbidv 3844 | . . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ↾ (1...𝑁)) → ([(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓 ↔ [(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 49 | 48 | ad2antll 729 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → ([(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓 ↔ [(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 50 | 46, 49 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → [(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓) | 
| 51 |  | dfsbcq 3789 | . . . . . . . . . . . . 13
⊢ (𝑐 = (𝑏‘𝑀) → ([𝑐 / 𝑣][𝑎 / 𝑢]𝜓 ↔ [(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 52 | 51 | anbi2d 630 | . . . . . . . . . . . 12
⊢ (𝑐 = (𝑏‘𝑀) → ((𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓))) | 
| 53 | 52 | rspcev 3621 | . . . . . . . . . . 11
⊢ (((𝑏‘𝑀) ∈ ℕ0 ∧ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [(𝑏‘𝑀) / 𝑣][𝑎 / 𝑢]𝜓)) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 54 | 41, 45, 50, 53 | syl12anc 836 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑏 ∈
(ℕ0 ↑m (1...𝑀))) ∧ ([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 55 | 54 | rexlimdva2 3156 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (∃𝑏 ∈
(ℕ0 ↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) → ∃𝑐 ∈ ℕ0 (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓))) | 
| 56 | 33, 55 | impbid 212 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (∃𝑐 ∈
ℕ0 (𝑎
∈ (ℕ0 ↑m (1...𝑁)) ∧ [𝑐 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))) | 
| 57 | 6, 56 | bitrid 283 | . . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((𝑎 ∈
(ℕ0 ↑m (1...𝑁)) ∧ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) ↔ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))) | 
| 58 | 57 | abbidv 2807 | . . . . . 6
⊢ (𝑁 ∈ ℕ0
→ {𝑎 ∣ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ∃𝑏 ∈
ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))}) | 
| 59 | 1, 58 | eqtrid 2788 | . . . . 5
⊢ (𝑁 ∈ ℕ0
→ {𝑎 ∈
(ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))}) | 
| 60 |  | nfcv 2904 | . . . . . 6
⊢
Ⅎ𝑢(ℕ0 ↑m
(1...𝑁)) | 
| 61 |  | nfcv 2904 | . . . . . 6
⊢
Ⅎ𝑎(ℕ0 ↑m
(1...𝑁)) | 
| 62 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑎∃𝑣 ∈ ℕ0
𝜓 | 
| 63 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑢ℕ0 | 
| 64 |  | nfcv 2904 | . . . . . . . 8
⊢
Ⅎ𝑢𝑏 | 
| 65 |  | nfsbc1v 3807 | . . . . . . . 8
⊢
Ⅎ𝑢[𝑎 / 𝑢]𝜓 | 
| 66 | 64, 65 | nfsbcw 3809 | . . . . . . 7
⊢
Ⅎ𝑢[𝑏 / 𝑣][𝑎 / 𝑢]𝜓 | 
| 67 | 63, 66 | nfrexw 3312 | . . . . . 6
⊢
Ⅎ𝑢∃𝑏 ∈ ℕ0
[𝑏 / 𝑣][𝑎 / 𝑢]𝜓 | 
| 68 |  | sbceq1a 3798 | . . . . . . . 8
⊢ (𝑢 = 𝑎 → (𝜓 ↔ [𝑎 / 𝑢]𝜓)) | 
| 69 | 68 | rexbidv 3178 | . . . . . . 7
⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜓 ↔ ∃𝑣 ∈ ℕ0 [𝑎 / 𝑢]𝜓)) | 
| 70 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑏[𝑎 / 𝑢]𝜓 | 
| 71 |  | nfsbc1v 3807 | . . . . . . . 8
⊢
Ⅎ𝑣[𝑏 / 𝑣][𝑎 / 𝑢]𝜓 | 
| 72 |  | sbceq1a 3798 | . . . . . . . 8
⊢ (𝑣 = 𝑏 → ([𝑎 / 𝑢]𝜓 ↔ [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 73 | 70, 71, 72 | cbvrexw 3306 | . . . . . . 7
⊢
(∃𝑣 ∈
ℕ0 [𝑎 / 𝑢]𝜓 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓) | 
| 74 | 69, 73 | bitrdi 287 | . . . . . 6
⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜓 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓)) | 
| 75 | 60, 61, 62, 67, 74 | cbvrabw 3472 | . . . . 5
⊢ {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 𝜓} =
{𝑎 ∈
(ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣][𝑎 / 𝑢]𝜓} | 
| 76 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑡 = 𝑏 → (𝑡‘𝑀) = (𝑏‘𝑀)) | 
| 77 |  | reseq1 5990 | . . . . . . . . 9
⊢ (𝑡 = 𝑏 → (𝑡 ↾ (1...𝑁)) = (𝑏 ↾ (1...𝑁))) | 
| 78 | 77 | sbceq1d 3792 | . . . . . . . 8
⊢ (𝑡 = 𝑏 → ([(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓 ↔ [(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 79 | 76, 78 | sbceqbid 3794 | . . . . . . 7
⊢ (𝑡 = 𝑏 → ([(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓 ↔ [(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓)) | 
| 80 | 79 | rexrab 3701 | . . . . . 6
⊢
(∃𝑏 ∈
{𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) | 
| 81 | 80 | abbii 2808 | . . . . 5
⊢ {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m (1...𝑀))([(𝑏‘𝑀) / 𝑣][(𝑏 ↾ (1...𝑁)) / 𝑢]𝜓 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))} | 
| 82 | 59, 75, 81 | 3eqtr4g 2801 | . . . 4
⊢ (𝑁 ∈ ℕ0
→ {𝑢 ∈
(ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))}) | 
| 83 |  | fvex 6918 | . . . . . . . 8
⊢ (𝑡‘𝑀) ∈ V | 
| 84 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑡 ∈ V | 
| 85 | 84 | resex 6046 | . . . . . . . 8
⊢ (𝑡 ↾ (1...𝑁)) ∈ V | 
| 86 |  | rexrabdioph.2 | . . . . . . . . 9
⊢ (𝑣 = (𝑡‘𝑀) → (𝜓 ↔ 𝜒)) | 
| 87 |  | rexrabdioph.3 | . . . . . . . . 9
⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒 ↔ 𝜑)) | 
| 88 | 86, 87 | sylan9bb 509 | . . . . . . . 8
⊢ ((𝑣 = (𝑡‘𝑀) ∧ 𝑢 = (𝑡 ↾ (1...𝑁))) → (𝜓 ↔ 𝜑)) | 
| 89 | 83, 85, 88 | sbc2ie 3865 | . . . . . . 7
⊢
([(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓 ↔ 𝜑) | 
| 90 | 89 | rabbii 3441 | . . . . . 6
⊢ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓} = {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑} | 
| 91 | 90 | rexeqi 3324 | . . . . 5
⊢
(∃𝑏 ∈
{𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))) | 
| 92 | 91 | abbii 2808 | . . . 4
⊢ {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝑁)) / 𝑢]𝜓}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))} | 
| 93 | 82, 92 | eqtrdi 2792 | . . 3
⊢ (𝑁 ∈ ℕ0
→ {𝑢 ∈
(ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} = {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))}) | 
| 94 | 93 | adantr 480 | . 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 𝜓} =
{𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))}) | 
| 95 |  | simpl 482 | . . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → 𝑁 ∈
ℕ0) | 
| 96 |  | nn0z 12640 | . . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) | 
| 97 |  | uzid 12894 | . . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) | 
| 98 |  | peano2uz 12944 | . . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑁) → (𝑁 + 1) ∈
(ℤ≥‘𝑁)) | 
| 99 | 96, 97, 98 | 3syl 18 | . . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(ℤ≥‘𝑁)) | 
| 100 | 10, 99 | eqeltrid 2844 | . . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
(ℤ≥‘𝑁)) | 
| 101 | 100 | adantr 480 | . . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → 𝑀 ∈ (ℤ≥‘𝑁)) | 
| 102 |  | simpr 484 | . . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑} ∈
(Dioph‘𝑀)) | 
| 103 |  | diophrex 42791 | . . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑} ∈
(Dioph‘𝑀)) →
{𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | 
| 104 | 95, 101, 102, 103 | syl3anc 1372 | . 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏 ∈ {𝑡 ∈ (ℕ0
↑m (1...𝑀))
∣ 𝜑}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | 
| 105 | 94, 104 | eqeltrd 2840 | 1
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 𝜓} ∈
(Dioph‘𝑁)) |