MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzshftral Structured version   Visualization version   GIF version

Theorem fzshftral 13594
Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzshftral
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0z 12574 . . . 4 0 ∈ ℤ
2 fzrevral 13591 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
31, 2mp3an3 1449 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
433adant3 1131 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
5 zsubcl 12609 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 − 𝑁) ∈ ℤ)
61, 5mpan 687 . . . 4 (𝑁 ∈ ℤ → (0 − 𝑁) ∈ ℤ)
7 zsubcl 12609 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 − 𝑀) ∈ ℤ)
81, 7mpan 687 . . . 4 (𝑀 ∈ ℤ → (0 − 𝑀) ∈ ℤ)
9 id 22 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
10 fzrevral 13591 . . . 4 (((0 − 𝑁) ∈ ℤ ∧ (0 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
116, 8, 9, 10syl3an 1159 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
12113com12 1122 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
13 ovex 7445 . . . . 5 (𝐾𝑘) ∈ V
14 oveq2 7420 . . . . . 6 (𝑥 = (𝐾𝑘) → (0 − 𝑥) = (0 − (𝐾𝑘)))
1514sbcco3gw 4422 . . . . 5 ((𝐾𝑘) ∈ V → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1613, 15ax-mp 5 . . . 4 ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑)
1716ralbii 3092 . . 3 (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑)
18 zcn 12568 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12568 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 zcn 12568 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
21 df-neg 11452 . . . . . . . . . . 11 -𝑀 = (0 − 𝑀)
2221oveq2i 7423 . . . . . . . . . 10 (𝐾 − -𝑀) = (𝐾 − (0 − 𝑀))
23 subneg 11514 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝐾 + 𝑀))
24 addcom 11405 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 + 𝑀) = (𝑀 + 𝐾))
2523, 24eqtrd 2771 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝑀 + 𝐾))
2622, 25eqtr3id 2785 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
27263adant3 1131 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
28 df-neg 11452 . . . . . . . . . . 11 -𝑁 = (0 − 𝑁)
2928oveq2i 7423 . . . . . . . . . 10 (𝐾 − -𝑁) = (𝐾 − (0 − 𝑁))
30 subneg 11514 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝐾 + 𝑁))
31 addcom 11405 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 + 𝑁) = (𝑁 + 𝐾))
3230, 31eqtrd 2771 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝑁 + 𝐾))
3329, 32eqtr3id 2785 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
34333adant2 1130 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
3527, 34oveq12d 7430 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
36353coml 1126 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3718, 19, 20, 36syl3an 1159 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3837raleqdv 3324 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
39 elfzelz 13506 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
4039zcnd 12672 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
41 df-neg 11452 . . . . . . . . 9 -(𝐾𝑘) = (0 − (𝐾𝑘))
42 negsubdi2 11524 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → -(𝐾𝑘) = (𝑘𝐾))
4341, 42eqtr3id 2785 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4420, 40, 43syl2an 595 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4544sbceq1d 3782 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ([(0 − (𝐾𝑘)) / 𝑗]𝜑[(𝑘𝐾) / 𝑗]𝜑))
4645ralbidva 3174 . . . . 5 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
47463ad2ant3 1134 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4838, 47bitrd 279 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4917, 48bitrid 283 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
504, 12, 493bitrd 305 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  [wsbc 3777  (class class class)co 7412  cc 11112  0cc0 11114   + caddc 11117  cmin 11449  -cneg 11450  cz 12563  ...cfz 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490
This theorem is referenced by:  fzoshftral  13754  fprodser  15898  prmgaplem7  16995  poimirlem27  36819
  Copyright terms: Public domain W3C validator