MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzshftral Structured version   Visualization version   GIF version

Theorem fzshftral 13652
Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzshftral
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0z 12622 . . . 4 0 ∈ ℤ
2 fzrevral 13649 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
31, 2mp3an3 1449 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
433adant3 1131 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
5 zsubcl 12657 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 − 𝑁) ∈ ℤ)
61, 5mpan 690 . . . 4 (𝑁 ∈ ℤ → (0 − 𝑁) ∈ ℤ)
7 zsubcl 12657 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 − 𝑀) ∈ ℤ)
81, 7mpan 690 . . . 4 (𝑀 ∈ ℤ → (0 − 𝑀) ∈ ℤ)
9 id 22 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
10 fzrevral 13649 . . . 4 (((0 − 𝑁) ∈ ℤ ∧ (0 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
116, 8, 9, 10syl3an 1159 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
12113com12 1122 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
13 ovex 7464 . . . . 5 (𝐾𝑘) ∈ V
14 oveq2 7439 . . . . . 6 (𝑥 = (𝐾𝑘) → (0 − 𝑥) = (0 − (𝐾𝑘)))
1514sbcco3gw 4431 . . . . 5 ((𝐾𝑘) ∈ V → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1613, 15ax-mp 5 . . . 4 ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑)
1716ralbii 3091 . . 3 (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑)
18 zcn 12616 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12616 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 zcn 12616 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
21 df-neg 11493 . . . . . . . . . . 11 -𝑀 = (0 − 𝑀)
2221oveq2i 7442 . . . . . . . . . 10 (𝐾 − -𝑀) = (𝐾 − (0 − 𝑀))
23 subneg 11556 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝐾 + 𝑀))
24 addcom 11445 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 + 𝑀) = (𝑀 + 𝐾))
2523, 24eqtrd 2775 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝑀 + 𝐾))
2622, 25eqtr3id 2789 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
27263adant3 1131 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
28 df-neg 11493 . . . . . . . . . . 11 -𝑁 = (0 − 𝑁)
2928oveq2i 7442 . . . . . . . . . 10 (𝐾 − -𝑁) = (𝐾 − (0 − 𝑁))
30 subneg 11556 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝐾 + 𝑁))
31 addcom 11445 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 + 𝑁) = (𝑁 + 𝐾))
3230, 31eqtrd 2775 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝑁 + 𝐾))
3329, 32eqtr3id 2789 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
34333adant2 1130 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
3527, 34oveq12d 7449 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
36353coml 1126 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3718, 19, 20, 36syl3an 1159 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3837raleqdv 3324 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
39 elfzelz 13561 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
4039zcnd 12721 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
41 df-neg 11493 . . . . . . . . 9 -(𝐾𝑘) = (0 − (𝐾𝑘))
42 negsubdi2 11566 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → -(𝐾𝑘) = (𝑘𝐾))
4341, 42eqtr3id 2789 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4420, 40, 43syl2an 596 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4544sbceq1d 3796 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ([(0 − (𝐾𝑘)) / 𝑗]𝜑[(𝑘𝐾) / 𝑗]𝜑))
4645ralbidva 3174 . . . . 5 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
47463ad2ant3 1134 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4838, 47bitrd 279 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4917, 48bitrid 283 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
504, 12, 493bitrd 305 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  [wsbc 3791  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156  cmin 11490  -cneg 11491  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  fzoshftral  13820  fprodser  15982  prmgaplem7  17091  poimirlem27  37634
  Copyright terms: Public domain W3C validator