MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzshftral Structured version   Visualization version   GIF version

Theorem fzshftral 13585
Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzshftral
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0z 12565 . . . 4 0 ∈ ℤ
2 fzrevral 13582 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
31, 2mp3an3 1450 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
433adant3 1132 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
5 zsubcl 12600 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 − 𝑁) ∈ ℤ)
61, 5mpan 688 . . . 4 (𝑁 ∈ ℤ → (0 − 𝑁) ∈ ℤ)
7 zsubcl 12600 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 − 𝑀) ∈ ℤ)
81, 7mpan 688 . . . 4 (𝑀 ∈ ℤ → (0 − 𝑀) ∈ ℤ)
9 id 22 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
10 fzrevral 13582 . . . 4 (((0 − 𝑁) ∈ ℤ ∧ (0 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
116, 8, 9, 10syl3an 1160 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
12113com12 1123 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
13 ovex 7438 . . . . 5 (𝐾𝑘) ∈ V
14 oveq2 7413 . . . . . 6 (𝑥 = (𝐾𝑘) → (0 − 𝑥) = (0 − (𝐾𝑘)))
1514sbcco3gw 4421 . . . . 5 ((𝐾𝑘) ∈ V → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1613, 15ax-mp 5 . . . 4 ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑)
1716ralbii 3093 . . 3 (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑)
18 zcn 12559 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12559 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 zcn 12559 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
21 df-neg 11443 . . . . . . . . . . 11 -𝑀 = (0 − 𝑀)
2221oveq2i 7416 . . . . . . . . . 10 (𝐾 − -𝑀) = (𝐾 − (0 − 𝑀))
23 subneg 11505 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝐾 + 𝑀))
24 addcom 11396 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 + 𝑀) = (𝑀 + 𝐾))
2523, 24eqtrd 2772 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝑀 + 𝐾))
2622, 25eqtr3id 2786 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
27263adant3 1132 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
28 df-neg 11443 . . . . . . . . . . 11 -𝑁 = (0 − 𝑁)
2928oveq2i 7416 . . . . . . . . . 10 (𝐾 − -𝑁) = (𝐾 − (0 − 𝑁))
30 subneg 11505 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝐾 + 𝑁))
31 addcom 11396 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 + 𝑁) = (𝑁 + 𝐾))
3230, 31eqtrd 2772 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝑁 + 𝐾))
3329, 32eqtr3id 2786 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
34333adant2 1131 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
3527, 34oveq12d 7423 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
36353coml 1127 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3718, 19, 20, 36syl3an 1160 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3837raleqdv 3325 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
39 elfzelz 13497 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
4039zcnd 12663 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
41 df-neg 11443 . . . . . . . . 9 -(𝐾𝑘) = (0 − (𝐾𝑘))
42 negsubdi2 11515 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → -(𝐾𝑘) = (𝑘𝐾))
4341, 42eqtr3id 2786 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4420, 40, 43syl2an 596 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4544sbceq1d 3781 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ([(0 − (𝐾𝑘)) / 𝑗]𝜑[(𝑘𝐾) / 𝑗]𝜑))
4645ralbidva 3175 . . . . 5 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
47463ad2ant3 1135 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4838, 47bitrd 278 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4917, 48bitrid 282 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
504, 12, 493bitrd 304 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  [wsbc 3776  (class class class)co 7405  cc 11104  0cc0 11106   + caddc 11109  cmin 11440  -cneg 11441  cz 12554  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  fzoshftral  13745  fprodser  15889  prmgaplem7  16986  poimirlem27  36503
  Copyright terms: Public domain W3C validator