MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Visualization version   GIF version

Theorem cnvopab 6169
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 7-Jun-2025.)
Assertion
Ref Expression
cnvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6134 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopabv 5845 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 elopab 5546 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 excom 2163 . . . 4 (∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 ancom 460 . . . . . . 7 ((𝑤 = 𝑥𝑧 = 𝑦) ↔ (𝑧 = 𝑦𝑤 = 𝑥))
6 vex 3492 . . . . . . . 8 𝑤 ∈ V
7 vex 3492 . . . . . . . 8 𝑧 ∈ V
86, 7opth 5496 . . . . . . 7 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑤 = 𝑥𝑧 = 𝑦))
97, 6opth 5496 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ↔ (𝑧 = 𝑦𝑤 = 𝑥))
105, 8, 93bitr4i 303 . . . . . 6 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩)
1110anbi1i 623 . . . . 5 ((⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
12112exbii 1847 . . . 4 (∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
133, 4, 123bitri 297 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
147, 6opelcnv 5906 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 elopab 5546 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
1613, 14, 153bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
171, 2, 16eqrelriiv 5814 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  cop 4654  {copab 5228  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  mptcnv  6171  cnvxp  6188  mptpreima  6269  f1ocnvd  7701  cnvoprab  8101  mapsncnv  8951  cnvepnep  9677  compsscnv  10440  dfiso2  17833  xkocnv  23843  lgsquadlem3  27444  axcontlem2  28998  cnvadj  31924  f1o3d  32646  cnvoprabOLD  32734  xrninxp  38348  prjspeclsp  42567  fsovrfovd  43971
  Copyright terms: Public domain W3C validator