![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvopab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 7-Jun-2025.) |
Ref | Expression |
---|---|
cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relopabv 5845 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
3 | elopab 5546 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | excom 2163 | . . . 4 ⊢ (∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | ancom 460 | . . . . . . 7 ⊢ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) | |
6 | vex 3492 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
7 | vex 3492 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opth 5496 | . . . . . . 7 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) |
9 | 7, 6 | opth 5496 | . . . . . . 7 ⊢ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) |
10 | 5, 8, 9 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉) |
11 | 10 | anbi1i 623 | . . . . 5 ⊢ ((〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
12 | 11 | 2exbii 1847 | . . . 4 ⊢ (∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
13 | 3, 4, 12 | 3bitri 297 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
14 | 7, 6 | opelcnv 5906 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
15 | elopab 5546 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
17 | 1, 2, 16 | eqrelriiv 5814 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 {copab 5228 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: mptcnv 6171 cnvxp 6188 mptpreima 6269 f1ocnvd 7701 cnvoprab 8101 mapsncnv 8951 cnvepnep 9677 compsscnv 10440 dfiso2 17833 xkocnv 23843 lgsquadlem3 27444 axcontlem2 28998 cnvadj 31924 f1o3d 32646 cnvoprabOLD 32734 xrninxp 38348 prjspeclsp 42567 fsovrfovd 43971 |
Copyright terms: Public domain | W3C validator |