| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvopab | Structured version Visualization version GIF version | ||
| Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 7-Jun-2025.) |
| Ref | Expression |
|---|---|
| cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | relopabv 5800 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
| 3 | elopab 5502 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | excom 2162 | . . . 4 ⊢ (∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | ancom 460 | . . . . . . 7 ⊢ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) | |
| 6 | vex 3463 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 7 | vex 3463 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 8 | 6, 7 | opth 5451 | . . . . . . 7 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) |
| 9 | 7, 6 | opth 5451 | . . . . . . 7 ⊢ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) |
| 10 | 5, 8, 9 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉) |
| 11 | 10 | anbi1i 624 | . . . . 5 ⊢ ((〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 12 | 11 | 2exbii 1849 | . . . 4 ⊢ (∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 13 | 3, 4, 12 | 3bitri 297 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 14 | 7, 6 | opelcnv 5861 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 15 | elopab 5502 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) | |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
| 17 | 1, 2, 16 | eqrelriiv 5769 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4607 {copab 5181 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: mptcnv 6128 cnvxp 6146 mptpreima 6227 f1ocnvd 7658 cnvoprab 8059 mapsncnv 8907 cnvepnep 9622 compsscnv 10385 dfiso2 17785 xkocnv 23752 lgsquadlem3 27345 axcontlem2 28944 cnvadj 31873 f1o3d 32605 xrninxp 38410 prjspeclsp 42635 fsovrfovd 44033 |
| Copyright terms: Public domain | W3C validator |