Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvopab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6012 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relopabv 5731 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
3 | vopelopabsb 5442 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑) | |
4 | sbcom2 2161 | . . . 4 ⊢ ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) | |
5 | 3, 4 | bitri 274 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) |
6 | vex 3436 | . . . 4 ⊢ 𝑧 ∈ V | |
7 | vex 3436 | . . . 4 ⊢ 𝑤 ∈ V | |
8 | 6, 7 | opelcnv 5790 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
9 | vopelopabsb 5442 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) | |
10 | 5, 8, 9 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
11 | 1, 2, 10 | eqrelriiv 5700 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 [wsb 2067 ∈ wcel 2106 〈cop 4567 {copab 5136 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: mptcnv 6043 cnvxp 6060 mptpreima 6141 f1ocnvd 7520 cnvoprab 7900 mapsncnv 8681 cnvepnep 9366 compsscnv 10127 dfiso2 17484 xkocnv 22965 lgsquadlem3 26530 axcontlem2 27333 cnvadj 30254 f1o3d 30962 cnvoprabOLD 31055 xrninxp 36518 prjspeclsp 40451 fsovrfovd 41617 |
Copyright terms: Public domain | W3C validator |