| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvopab | Structured version Visualization version GIF version | ||
| Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2144, ax-12 2180. (Revised by SN, 7-Jun-2025.) |
| Ref | Expression |
|---|---|
| cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6052 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | relopabv 5760 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
| 3 | elopab 5465 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | excom 2165 | . . . 4 ⊢ (∃𝑥∃𝑦(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | ancom 460 | . . . . . . 7 ⊢ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) | |
| 6 | vex 3440 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 7 | vex 3440 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 8 | 6, 7 | opth 5414 | . . . . . . 7 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) |
| 9 | 7, 6 | opth 5414 | . . . . . . 7 ⊢ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) |
| 10 | 5, 8, 9 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉) |
| 11 | 10 | anbi1i 624 | . . . . 5 ⊢ ((〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 12 | 11 | 2exbii 1850 | . . . 4 ⊢ (∃𝑦∃𝑥(〈𝑤, 𝑧〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 13 | 3, 4, 12 | 3bitri 297 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) |
| 14 | 7, 6 | opelcnv 5820 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 15 | elopab 5465 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ ∃𝑦∃𝑥(〈𝑧, 𝑤〉 = 〈𝑦, 𝑥〉 ∧ 𝜑)) | |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
| 17 | 1, 2, 16 | eqrelriiv 5729 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 {copab 5151 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: mptcnv 6085 cnvxp 6104 mptpreima 6185 f1ocnvd 7597 cnvoprab 7992 mapsncnv 8817 cnvepnep 9498 compsscnv 10262 dfiso2 17679 xkocnv 23729 lgsquadlem3 27320 axcontlem2 28943 cnvadj 31872 f1o3d 32608 xrninxp 38438 prjspeclsp 42704 fsovrfovd 44101 |
| Copyright terms: Public domain | W3C validator |