MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Visualization version   GIF version

Theorem cnvopab 6126
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 7-Jun-2025.)
Assertion
Ref Expression
cnvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6091 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopabv 5800 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 elopab 5502 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 excom 2162 . . . 4 (∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 ancom 460 . . . . . . 7 ((𝑤 = 𝑥𝑧 = 𝑦) ↔ (𝑧 = 𝑦𝑤 = 𝑥))
6 vex 3463 . . . . . . . 8 𝑤 ∈ V
7 vex 3463 . . . . . . . 8 𝑧 ∈ V
86, 7opth 5451 . . . . . . 7 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑤 = 𝑥𝑧 = 𝑦))
97, 6opth 5451 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ↔ (𝑧 = 𝑦𝑤 = 𝑥))
105, 8, 93bitr4i 303 . . . . . 6 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩)
1110anbi1i 624 . . . . 5 ((⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
12112exbii 1849 . . . 4 (∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
133, 4, 123bitri 297 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
147, 6opelcnv 5861 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 elopab 5502 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
1613, 14, 153bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
171, 2, 16eqrelriiv 5769 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  cop 4607  {copab 5181  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  mptcnv  6128  cnvxp  6146  mptpreima  6227  f1ocnvd  7658  cnvoprab  8059  mapsncnv  8907  cnvepnep  9622  compsscnv  10385  dfiso2  17785  xkocnv  23752  lgsquadlem3  27345  axcontlem2  28944  cnvadj  31873  f1o3d  32605  xrninxp  38410  prjspeclsp  42635  fsovrfovd  44033
  Copyright terms: Public domain W3C validator