Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvopab | Structured version Visualization version GIF version |
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6006 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relopabv 5725 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
3 | vopelopabsb 5440 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑) | |
4 | sbcom2 2162 | . . . 4 ⊢ ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) | |
5 | 3, 4 | bitri 274 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) |
6 | vex 3431 | . . . 4 ⊢ 𝑧 ∈ V | |
7 | vex 3431 | . . . 4 ⊢ 𝑤 ∈ V | |
8 | 6, 7 | opelcnv 5784 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
9 | vopelopabsb 5440 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) | |
10 | 5, 8, 9 | 3bitr4i 302 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
11 | 1, 2, 10 | eqrelriiv 5694 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 [wsb 2068 ∈ wcel 2107 〈cop 4569 {copab 5137 ◡ccnv 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5591 df-rel 5592 df-cnv 5593 |
This theorem is referenced by: mptcnv 6037 cnvxp 6054 mptpreima 6135 f1ocnvd 7503 cnvoprab 7878 mapsncnv 8644 cnvepnep 9312 compsscnv 10074 dfiso2 17428 xkocnv 22909 lgsquadlem3 26473 axcontlem2 27276 cnvadj 30195 f1o3d 30903 cnvoprabOLD 30997 xrninxp 36487 prjspeclsp 40414 fsovrfovd 41548 |
Copyright terms: Public domain | W3C validator |