MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Visualization version   GIF version

Theorem cnvopab 6157
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 7-Jun-2025.)
Assertion
Ref Expression
cnvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6122 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopabv 5831 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 elopab 5532 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 excom 2162 . . . 4 (∃𝑥𝑦(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 ancom 460 . . . . . . 7 ((𝑤 = 𝑥𝑧 = 𝑦) ↔ (𝑧 = 𝑦𝑤 = 𝑥))
6 vex 3484 . . . . . . . 8 𝑤 ∈ V
7 vex 3484 . . . . . . . 8 𝑧 ∈ V
86, 7opth 5481 . . . . . . 7 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑤 = 𝑥𝑧 = 𝑦))
97, 6opth 5481 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ↔ (𝑧 = 𝑦𝑤 = 𝑥))
105, 8, 93bitr4i 303 . . . . . 6 (⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩)
1110anbi1i 624 . . . . 5 ((⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
12112exbii 1849 . . . 4 (∃𝑦𝑥(⟨𝑤, 𝑧⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
133, 4, 123bitri 297 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
147, 6opelcnv 5892 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 elopab 5532 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑦, 𝑥⟩ ∧ 𝜑))
1613, 14, 153bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
171, 2, 16eqrelriiv 5800 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  cop 4632  {copab 5205  ccnv 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  mptcnv  6159  cnvxp  6177  mptpreima  6258  f1ocnvd  7684  cnvoprab  8085  mapsncnv  8933  cnvepnep  9648  compsscnv  10411  dfiso2  17816  xkocnv  23822  lgsquadlem3  27426  axcontlem2  28980  cnvadj  31911  f1o3d  32637  xrninxp  38393  prjspeclsp  42622  fsovrfovd  44022
  Copyright terms: Public domain W3C validator