MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp0b Structured version   Visualization version   GIF version

Theorem sgrp0b 18480
Description: The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
sgrp0b {⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Smgrp

Proof of Theorem sgrp0b
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm0b 18438 . 2 {⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Mgm
2 ral0 4461 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑦)(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑧) = (𝑥(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})(𝑦(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑧))
3 0ex 5255 . . . 4 ∅ ∈ V
4 eqid 2737 . . . . 5 {⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} = {⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩}
54grpbase 17093 . . . 4 (∅ ∈ V → ∅ = (Base‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩}))
63, 5ax-mp 5 . . 3 ∅ = (Base‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})
7 eqid 2737 . . 3 (+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩}) = (+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})
86, 7issgrp 18473 . 2 ({⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Smgrp ↔ ({⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Mgm ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑦)(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑧) = (𝑥(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})(𝑦(+g‘{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩})𝑧))))
91, 2, 8mpbir2an 709 1 {⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Smgrp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wral 3062  Vcvv 3442  c0 4273  {cpr 4579  cop 4583  cfv 6483  (class class class)co 7341  ndxcnx 16991  Basecbs 17009  +gcplusg 17059  Mgmcmgm 18421  Smgrpcsgrp 18471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-n0 12339  df-z 12425  df-uz 12688  df-fz 13345  df-struct 16945  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-mgm 18423  df-sgrp 18472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator