Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issgrp Structured version   Visualization version   GIF version

Theorem issgrp 17897
 Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐵 = (Base‘𝑀)
issgrp.o = (+g𝑀)
Assertion
Ref Expression
issgrp (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6661 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) ∈ V)
2 fveq2 6646 . . . 4 (𝑔 = 𝑀 → (Base‘𝑔) = (Base‘𝑀))
3 issgrp.b . . . 4 𝐵 = (Base‘𝑀)
42, 3eqtr4di 2851 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) = 𝐵)
5 fvexd 6661 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) ∈ V)
6 fveq2 6646 . . . . . 6 (𝑔 = 𝑀 → (+g𝑔) = (+g𝑀))
76adantr 484 . . . . 5 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = (+g𝑀))
8 issgrp.o . . . . 5 = (+g𝑀)
97, 8eqtr4di 2851 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = )
10 simplr 768 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
11 id 22 . . . . . . . . . 10 (𝑜 = 𝑜 = )
12 oveq 7142 . . . . . . . . . 10 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
13 eqidd 2799 . . . . . . . . . 10 (𝑜 = 𝑧 = 𝑧)
1411, 12, 13oveq123d 7157 . . . . . . . . 9 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
15 eqidd 2799 . . . . . . . . . 10 (𝑜 = 𝑥 = 𝑥)
16 oveq 7142 . . . . . . . . . 10 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
1711, 15, 16oveq123d 7157 . . . . . . . . 9 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
1814, 17eqeq12d 2814 . . . . . . . 8 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1918adantl 485 . . . . . . 7 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2010, 19raleqbidv 3354 . . . . . 6 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2110, 20raleqbidv 3354 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2210, 21raleqbidv 3354 . . . 4 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
235, 9, 22sbcied2 3763 . . 3 ((𝑔 = 𝑀𝑏 = 𝐵) → ([(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
241, 4, 23sbcied2 3763 . 2 (𝑔 = 𝑀 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
25 df-sgrp 17896 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
2624, 25elrab2 3631 1 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3441  [wsbc 3720  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  +gcplusg 16560  Mgmcmgm 17845  Smgrpcsgrp 17895 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5175 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-iota 6284  df-fv 6333  df-ov 7139  df-sgrp 17896 This theorem is referenced by:  issgrpv  17898  issgrpn0  17899  isnsgrp  17900  sgrpmgm  17901  sgrpass  17902  sgrp0  17903  sgrp0b  17904  sgrp1  17905  efmndsgrp  18046  smndex1sgrp  18068  sgrp2nmndlem4  18088  copissgrp  44471  nnsgrp  44480  sgrpplusgaopALT  44498  sgrp2sgrp  44531  lidlmsgrp  44593  2zrngasgrp  44607  2zrngmsgrp  44614
 Copyright terms: Public domain W3C validator