MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issgrp Structured version   Visualization version   GIF version

Theorem issgrp 18636
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐵 = (Base‘𝑀)
issgrp.o = (+g𝑀)
Assertion
Ref Expression
issgrp (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6846 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) ∈ V)
2 fveq2 6831 . . . 4 (𝑔 = 𝑀 → (Base‘𝑔) = (Base‘𝑀))
3 issgrp.b . . . 4 𝐵 = (Base‘𝑀)
42, 3eqtr4di 2786 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) = 𝐵)
5 fvexd 6846 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) ∈ V)
6 fveq2 6831 . . . . . 6 (𝑔 = 𝑀 → (+g𝑔) = (+g𝑀))
76adantr 480 . . . . 5 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = (+g𝑀))
8 issgrp.o . . . . 5 = (+g𝑀)
97, 8eqtr4di 2786 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = )
10 simplr 768 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
11 id 22 . . . . . . . . . 10 (𝑜 = 𝑜 = )
12 oveq 7361 . . . . . . . . . 10 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
13 eqidd 2734 . . . . . . . . . 10 (𝑜 = 𝑧 = 𝑧)
1411, 12, 13oveq123d 7376 . . . . . . . . 9 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
15 eqidd 2734 . . . . . . . . . 10 (𝑜 = 𝑥 = 𝑥)
16 oveq 7361 . . . . . . . . . 10 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
1711, 15, 16oveq123d 7376 . . . . . . . . 9 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
1814, 17eqeq12d 2749 . . . . . . . 8 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1918adantl 481 . . . . . . 7 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2010, 19raleqbidv 3313 . . . . . 6 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2110, 20raleqbidv 3313 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2210, 21raleqbidv 3313 . . . 4 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
235, 9, 22sbcied2 3782 . . 3 ((𝑔 = 𝑀𝑏 = 𝐵) → ([(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
241, 4, 23sbcied2 3782 . 2 (𝑔 = 𝑀 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
25 df-sgrp 18635 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
2624, 25elrab2 3646 1 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  [wsbc 3737  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  Mgmcmgm 18554  Smgrpcsgrp 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-sgrp 18635
This theorem is referenced by:  issgrpv  18637  issgrpn0  18638  isnsgrp  18639  sgrpmgm  18640  sgrpass  18641  sgrp0  18643  sgrp0b  18644  sgrp1  18645  efmndsgrp  18802  smndex1sgrp  18824  sgrp2nmndlem4  18844  rnglidlmsgrp  21192  copissgrp  48330  nnsgrp  48339  sgrpplusgaopALT  48357  sgrp2sgrp  48390  2zrngasgrp  48408  2zrngmsgrp  48415
  Copyright terms: Public domain W3C validator