MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issgrp Structured version   Visualization version   GIF version

Theorem issgrp 17600
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐵 = (Base‘𝑀)
issgrp.o = (+g𝑀)
Assertion
Ref Expression
issgrp (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6426 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) ∈ V)
2 fveq2 6411 . . . 4 (𝑔 = 𝑀 → (Base‘𝑔) = (Base‘𝑀))
3 issgrp.b . . . 4 𝐵 = (Base‘𝑀)
42, 3syl6eqr 2851 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) = 𝐵)
5 fvexd 6426 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) ∈ V)
6 fveq2 6411 . . . . . 6 (𝑔 = 𝑀 → (+g𝑔) = (+g𝑀))
76adantr 473 . . . . 5 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = (+g𝑀))
8 issgrp.o . . . . 5 = (+g𝑀)
97, 8syl6eqr 2851 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = )
10 simplr 786 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
11 id 22 . . . . . . . . . 10 (𝑜 = 𝑜 = )
12 oveq 6884 . . . . . . . . . 10 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
13 eqidd 2800 . . . . . . . . . 10 (𝑜 = 𝑧 = 𝑧)
1411, 12, 13oveq123d 6899 . . . . . . . . 9 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
15 eqidd 2800 . . . . . . . . . 10 (𝑜 = 𝑥 = 𝑥)
16 oveq 6884 . . . . . . . . . 10 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
1711, 15, 16oveq123d 6899 . . . . . . . . 9 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
1814, 17eqeq12d 2814 . . . . . . . 8 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1918adantl 474 . . . . . . 7 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2010, 19raleqbidv 3335 . . . . . 6 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2110, 20raleqbidv 3335 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2210, 21raleqbidv 3335 . . . 4 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
235, 9, 22sbcied2 3671 . . 3 ((𝑔 = 𝑀𝑏 = 𝐵) → ([(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
241, 4, 23sbcied2 3671 . 2 (𝑔 = 𝑀 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
25 df-sgrp 17599 . 2 SGrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
2624, 25elrab2 3560 1 (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  [wsbc 3633  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  Mgmcmgm 17555  SGrpcsgrp 17598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-nul 4983
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-ov 6881  df-sgrp 17599
This theorem is referenced by:  issgrpv  17601  issgrpn0  17602  isnsgrp  17603  sgrpmgm  17604  sgrpass  17605  sgrp0  17606  sgrp0b  17607  sgrp1  17608  sgrp2nmndlem4  17731  copissgrp  42607  nnsgrp  42616  sgrpplusgaopALT  42630  sgrp2sgrp  42663  lidlmsgrp  42725  2zrngasgrp  42739  2zrngmsgrp  42746
  Copyright terms: Public domain W3C validator