MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpcl Structured version   Visualization version   GIF version

Theorem sgrpcl 18655
Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpcl ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem sgrpcl
StepHypRef Expression
1 sgrpmgm 18653 . 2 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 sgrpass.b . . 3 𝐵 = (Base‘𝐺)
3 sgrpass.o . . 3 = (+g𝐺)
42, 3mgmcl 18572 . 2 ((𝐺 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1160 1 ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cfv 6534  (class class class)co 7402  Basecbs 17149  +gcplusg 17202  Mgmcmgm 18567  Smgrpcsgrp 18647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5297
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405  df-mgm 18569  df-sgrp 18648
This theorem is referenced by:  sgrppropd  18660  prdsplusgsgrpcl  18661  cntzsgrpcl  19246  rngpropd  20075
  Copyright terms: Public domain W3C validator