MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpcl Structured version   Visualization version   GIF version

Theorem sgrpcl 18613
Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpcl ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem sgrpcl
StepHypRef Expression
1 sgrpmgm 18611 . 2 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 sgrpass.b . . 3 𝐵 = (Base‘𝐺)
3 sgrpass.o . . 3 = (+g𝐺)
42, 3mgmcl 18560 . 2 ((𝐺 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Mgmcmgm 18555  Smgrpcsgrp 18605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-mgm 18557  df-sgrp 18606
This theorem is referenced by:  sgrppropd  18618  prdsplusgsgrpcl  18619  cntzsgrpcl  19192  rngpropd  46659
  Copyright terms: Public domain W3C validator