MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpcl Structured version   Visualization version   GIF version

Theorem sgrpcl 18631
Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpcl ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem sgrpcl
StepHypRef Expression
1 sgrpmgm 18629 . 2 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 sgrpass.b . . 3 𝐵 = (Base‘𝐺)
3 sgrpass.o . . 3 = (+g𝐺)
42, 3mgmcl 18548 . 2 ((𝐺 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Mgmcmgm 18543  Smgrpcsgrp 18623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-mgm 18545  df-sgrp 18624
This theorem is referenced by:  sgrppropd  18636  prdsplusgsgrpcl  18637  cntzsgrpcl  19244  rngpropd  20090
  Copyright terms: Public domain W3C validator