| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| sgrpass.b | ⊢ 𝐵 = (Base‘𝐺) |
| sgrpass.o | ⊢ ⚬ = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| sgrpcl | ⊢ ((𝐺 ∈ Smgrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpmgm 18629 | . 2 ⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | |
| 2 | sgrpass.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | sgrpass.o | . . 3 ⊢ ⚬ = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18548 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Smgrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Mgmcmgm 18543 Smgrpcsgrp 18623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18545 df-sgrp 18624 |
| This theorem is referenced by: sgrppropd 18636 prdsplusgsgrpcl 18637 cntzsgrpcl 19244 rngpropd 20090 |
| Copyright terms: Public domain | W3C validator |