| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| sgrpass.b | ⊢ 𝐵 = (Base‘𝐺) |
| sgrpass.o | ⊢ ⚬ = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| sgrpcl | ⊢ ((𝐺 ∈ Smgrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpmgm 18634 | . 2 ⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | |
| 2 | sgrpass.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | sgrpass.o | . . 3 ⊢ ⚬ = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18553 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Smgrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Mgmcmgm 18548 Smgrpcsgrp 18628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-mgm 18550 df-sgrp 18629 |
| This theorem is referenced by: sgrppropd 18641 prdsplusgsgrpcl 18642 cntzsgrpcl 19248 rngpropd 20094 |
| Copyright terms: Public domain | W3C validator |