| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp131 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp131 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp31 1210 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28904 exatleN 39443 3atlem1 39522 3atlem2 39523 3atlem5 39526 2llnjaN 39605 4atlem11b 39647 4atlem12b 39650 lplncvrlvol2 39654 dalemsea 39668 dath2 39776 cdlemblem 39832 dalawlem1 39910 lhpexle3lem 40050 4atexlemex6 40113 cdleme22f2 40386 cdleme22g 40387 cdlemg7aN 40664 cdlemg34 40751 cdlemj1 40860 cdlemk23-3 40941 cdlemk25-3 40943 cdlemk26b-3 40944 cdleml3N 41017 |
| Copyright terms: Public domain | W3C validator |