Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp131 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp131 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp31 1207 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem3 27202 exatleN 37345 3atlem1 37424 3atlem2 37425 3atlem5 37428 2llnjaN 37507 4atlem11b 37549 4atlem12b 37552 lplncvrlvol2 37556 dalemsea 37570 dath2 37678 cdlemblem 37734 dalawlem1 37812 lhpexle3lem 37952 4atexlemex6 38015 cdleme22f2 38288 cdleme22g 38289 cdlemg7aN 38566 cdlemg34 38653 cdlemj1 38762 cdlemk23-3 38843 cdlemk25-3 38845 cdlemk26b-3 38846 cdleml3N 38919 |
Copyright terms: Public domain | W3C validator |