MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Visualization version   GIF version

Theorem simp131 1306
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1207 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant1 1131 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ax5seglem3  27202  exatleN  37345  3atlem1  37424  3atlem2  37425  3atlem5  37428  2llnjaN  37507  4atlem11b  37549  4atlem12b  37552  lplncvrlvol2  37556  dalemsea  37570  dath2  37678  cdlemblem  37734  dalawlem1  37812  lhpexle3lem  37952  4atexlemex6  38015  cdleme22f2  38288  cdleme22g  38289  cdlemg7aN  38566  cdlemg34  38653  cdlemj1  38762  cdlemk23-3  38843  cdlemk25-3  38845  cdlemk26b-3  38846  cdleml3N  38919
  Copyright terms: Public domain W3C validator