MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Visualization version   GIF version

Theorem simp131 1307
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1208 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant1 1132 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28961  exatleN  39387  3atlem1  39466  3atlem2  39467  3atlem5  39470  2llnjaN  39549  4atlem11b  39591  4atlem12b  39594  lplncvrlvol2  39598  dalemsea  39612  dath2  39720  cdlemblem  39776  dalawlem1  39854  lhpexle3lem  39994  4atexlemex6  40057  cdleme22f2  40330  cdleme22g  40331  cdlemg7aN  40608  cdlemg34  40695  cdlemj1  40804  cdlemk23-3  40885  cdlemk25-3  40887  cdlemk26b-3  40888  cdleml3N  40961
  Copyright terms: Public domain W3C validator