MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Visualization version   GIF version

Theorem simp131 1309
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1210 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ax5seglem3  28876  exatleN  39383  3atlem1  39462  3atlem2  39463  3atlem5  39466  2llnjaN  39545  4atlem11b  39587  4atlem12b  39590  lplncvrlvol2  39594  dalemsea  39608  dath2  39716  cdlemblem  39772  dalawlem1  39850  lhpexle3lem  39990  4atexlemex6  40053  cdleme22f2  40326  cdleme22g  40327  cdlemg7aN  40604  cdlemg34  40691  cdlemj1  40800  cdlemk23-3  40881  cdlemk25-3  40883  cdlemk26b-3  40884  cdleml3N  40957
  Copyright terms: Public domain W3C validator