| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp131 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp131 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp31 1210 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem3 28834 exatleN 39371 3atlem1 39450 3atlem2 39451 3atlem5 39454 2llnjaN 39533 4atlem11b 39575 4atlem12b 39578 lplncvrlvol2 39582 dalemsea 39596 dath2 39704 cdlemblem 39760 dalawlem1 39838 lhpexle3lem 39978 4atexlemex6 40041 cdleme22f2 40314 cdleme22g 40315 cdlemg7aN 40592 cdlemg34 40679 cdlemj1 40788 cdlemk23-3 40869 cdlemk25-3 40871 cdlemk26b-3 40872 cdleml3N 40945 |
| Copyright terms: Public domain | W3C validator |