Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp131 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp131 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp31 1207 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-3an 1087 |
This theorem is referenced by: ax5seglem3 26817 exatleN 36973 3atlem1 37052 3atlem2 37053 3atlem5 37056 2llnjaN 37135 4atlem11b 37177 4atlem12b 37180 lplncvrlvol2 37184 dalemsea 37198 dath2 37306 cdlemblem 37362 dalawlem1 37440 lhpexle3lem 37580 4atexlemex6 37643 cdleme22f2 37916 cdleme22g 37917 cdlemg7aN 38194 cdlemg34 38281 cdlemj1 38390 cdlemk23-3 38471 cdlemk25-3 38473 cdlemk26b-3 38474 cdleml3N 38547 |
Copyright terms: Public domain | W3C validator |