MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Visualization version   GIF version

Theorem simp131 1308
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1209 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ax5seglem3  28964  exatleN  39361  3atlem1  39440  3atlem2  39441  3atlem5  39444  2llnjaN  39523  4atlem11b  39565  4atlem12b  39568  lplncvrlvol2  39572  dalemsea  39586  dath2  39694  cdlemblem  39750  dalawlem1  39828  lhpexle3lem  39968  4atexlemex6  40031  cdleme22f2  40304  cdleme22g  40305  cdlemg7aN  40582  cdlemg34  40669  cdlemj1  40778  cdlemk23-3  40859  cdlemk25-3  40861  cdlemk26b-3  40862  cdleml3N  40935
  Copyright terms: Public domain W3C validator