Proof of Theorem 2llnjaN
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | 2llnja.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | simpl1l 1222 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝐾 ∈ Lat) |
5 | | simpl21 1249 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑄 ∈ 𝐴) |
6 | | simpl22 1250 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑅 ∈ 𝐴) |
7 | | 2llnja.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
8 | | 2llnja.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 1, 7, 8 | hlatjcl 37308 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
10 | 3, 5, 6, 9 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
11 | | simpl31 1252 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑆 ∈ 𝐴) |
12 | | simpl32 1253 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑇 ∈ 𝐴) |
13 | 1, 7, 8 | hlatjcl 37308 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
14 | 3, 11, 12, 13 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
15 | 1, 7 | latjcl 18072 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) ∈ (Base‘𝐾)) |
16 | 4, 10, 14, 15 | syl3anc 1369 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) ∈ (Base‘𝐾)) |
17 | | simpl1r 1223 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑊 ∈ 𝑃) |
18 | | 2llnja.p |
. . . 4
⊢ 𝑃 = (LPlanes‘𝐾) |
19 | 1, 18 | lplnbase 37475 |
. . 3
⊢ (𝑊 ∈ 𝑃 → 𝑊 ∈ (Base‘𝐾)) |
20 | 17, 19 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑊 ∈ (Base‘𝐾)) |
21 | | simpr1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑄 ∨ 𝑅) ≤ 𝑊) |
22 | | simpr2 1193 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑆 ∨ 𝑇) ≤ 𝑊) |
23 | 1, 2, 7 | latjle12 18083 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊) ↔ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) ≤ 𝑊)) |
24 | 4, 10, 14, 20, 23 | syl13anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊) ↔ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) ≤ 𝑊)) |
25 | 21, 22, 24 | mpbi2and 708 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) ≤ 𝑊) |
26 | 1, 8 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
27 | 12, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑇 ∈ (Base‘𝐾)) |
28 | 1, 7 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ∈ (Base‘𝐾)) |
29 | 4, 10, 27, 28 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ∈ (Base‘𝐾)) |
30 | 1, 8 | atbase 37230 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
31 | 11, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑆 ∈ (Base‘𝐾)) |
32 | 1, 2, 7 | latlej2 18082 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ≤ (𝑆 ∨ 𝑇)) |
33 | 4, 31, 27, 32 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑇 ≤ (𝑆 ∨ 𝑇)) |
34 | 1, 2, 7 | latjlej2 18087 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → (𝑇 ≤ (𝑆 ∨ 𝑇) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
35 | 4, 27, 14, 10, 34 | syl13anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑇 ≤ (𝑆 ∨ 𝑇) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
36 | 33, 35 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
37 | 1, 2, 4, 29, 16, 20, 36, 25 | lattrd 18079 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ 𝑊) |
38 | 37 | 3adant3 1130 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ 𝑊) |
39 | | simp11l 1282 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝐾 ∈ HL) |
40 | | simp121 1303 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
41 | | simp122 1304 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
42 | | simp132 1307 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑇 ∈ 𝐴) |
43 | | simp123 1305 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) |
44 | | simp23 1206 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) |
45 | | simpl3 1191 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → 𝑆 ≤ (𝑄 ∨ 𝑅)) |
46 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → 𝑇 ≤ (𝑄 ∨ 𝑅)) |
47 | 1, 2, 7 | latjle12 18083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑄 ∨ 𝑅) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅))) |
48 | 4, 31, 27, 10, 47 | syl13anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑆 ≤ (𝑄 ∨ 𝑅) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅))) |
49 | 48 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑆 ≤ (𝑄 ∨ 𝑅) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅))) |
50 | 49 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → ((𝑆 ≤ (𝑄 ∨ 𝑅) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅))) |
51 | 45, 46, 50 | mpbi2and 708 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → (𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅)) |
52 | | simpl3 1191 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) |
53 | 2, 7, 8 | ps-1 37418 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅) ↔ (𝑆 ∨ 𝑇) = (𝑄 ∨ 𝑅))) |
54 | 3, 52, 5, 6, 53 | syl112anc 1372 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅) ↔ (𝑆 ∨ 𝑇) = (𝑄 ∨ 𝑅))) |
55 | 54 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅) ↔ (𝑆 ∨ 𝑇) = (𝑄 ∨ 𝑅))) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → ((𝑆 ∨ 𝑇) ≤ (𝑄 ∨ 𝑅) ↔ (𝑆 ∨ 𝑇) = (𝑄 ∨ 𝑅))) |
57 | 51, 56 | mpbid 231 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → (𝑆 ∨ 𝑇) = (𝑄 ∨ 𝑅)) |
58 | 57 | eqcomd 2744 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑅) = (𝑆 ∨ 𝑇)) |
59 | 58 | ex 412 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → (𝑇 ≤ (𝑄 ∨ 𝑅) → (𝑄 ∨ 𝑅) = (𝑆 ∨ 𝑇))) |
60 | 59 | necon3ad 2955 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇) → ¬ 𝑇 ≤ (𝑄 ∨ 𝑅))) |
61 | 44, 60 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑇 ≤ (𝑄 ∨ 𝑅)) |
62 | 2, 7, 8, 18 | lplni2 37478 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ∈ 𝑃) |
63 | 39, 40, 41, 42, 43, 61, 62 | syl132anc 1386 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ∈ 𝑃) |
64 | | simp11r 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑊 ∈ 𝑃) |
65 | 2, 18 | lplncmp 37503 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑅) ∨ 𝑇) ∈ 𝑃 ∧ 𝑊 ∈ 𝑃) → (((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ 𝑊 ↔ ((𝑄 ∨ 𝑅) ∨ 𝑇) = 𝑊)) |
66 | 39, 63, 64, 65 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → (((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ 𝑊 ↔ ((𝑄 ∨ 𝑅) ∨ 𝑇) = 𝑊)) |
67 | 38, 66 | mpbid 231 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑇) = 𝑊) |
68 | 36 | 3adant3 1130 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑇) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
69 | 67, 68 | eqbrtrrd 5094 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑊 ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
70 | 69 | 3expia 1119 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑆 ≤ (𝑄 ∨ 𝑅) → 𝑊 ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
71 | 1, 7 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ (Base‘𝐾)) |
72 | 4, 10, 31, 71 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ (Base‘𝐾)) |
73 | 1, 2, 7 | latlej1 18081 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
74 | 4, 31, 27, 73 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
75 | 1, 2, 7 | latjlej2 18087 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → (𝑆 ≤ (𝑆 ∨ 𝑇) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
76 | 4, 31, 14, 10, 75 | syl13anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (𝑆 ≤ (𝑆 ∨ 𝑇) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
77 | 74, 76 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
78 | 1, 2, 4, 72, 16, 20, 77, 25 | lattrd 18079 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ 𝑊) |
79 | 78 | 3adant3 1130 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ 𝑊) |
80 | | simp11l 1282 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝐾 ∈ HL) |
81 | | simp121 1303 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
82 | | simp122 1304 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
83 | | simp131 1306 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑆 ∈ 𝐴) |
84 | | simp123 1305 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) |
85 | | simp3 1136 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) |
86 | 2, 7, 8, 18 | lplni2 37478 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
87 | 80, 81, 82, 83, 84, 85, 86 | syl132anc 1386 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
88 | | simp11r 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑊 ∈ 𝑃) |
89 | 2, 18 | lplncmp 37503 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ∧ 𝑊 ∈ 𝑃) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ 𝑊 ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = 𝑊)) |
90 | 80, 87, 88, 89 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ 𝑊 ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = 𝑊)) |
91 | 79, 90 | mpbid 231 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = 𝑊) |
92 | 77 | 3adant3 1130 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
93 | 91, 92 | eqbrtrrd 5094 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇)) ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → 𝑊 ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
94 | 93 | 3expia 1119 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → (¬ 𝑆 ≤ (𝑄 ∨ 𝑅) → 𝑊 ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)))) |
95 | 70, 94 | pm2.61d 179 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → 𝑊 ≤ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇))) |
96 | 1, 2, 4, 16, 20, 25, 95 | latasymd 18078 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ≠ 𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ ((𝑄 ∨ 𝑅) ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) ≤ 𝑊 ∧ (𝑄 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇))) → ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) = 𝑊) |