Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Visualization version   GIF version

Theorem lhpexle3lem 37029
Description: There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 1183 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 37028 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
7 simp31 1201 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝 𝑊)
8 simp32 1202 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑋)
9 simp1r 1190 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑋 = 𝑌)
108, 9neeqtrd 3085 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑌)
11 simp33 1203 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑍)
128, 10, 113jca 1120 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝𝑋𝑝𝑌𝑝𝑍))
137, 12jca 512 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
14133exp 1111 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝𝐴 → ((𝑝 𝑊𝑝𝑋𝑝𝑍) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))))
1514reximdvai 3272 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍))))
166, 15mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
17 simprrr 778 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 𝑊)
18 simp11l 1276 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
1918adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ HL)
2019hllatd 36382 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ Lat)
21 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2221, 3atbase 36307 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2322ad2antrl 724 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 ∈ (Base‘𝐾))
24 simp121 1297 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
2524adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋𝐴)
2621, 3atbase 36307 . . . . . . . . 9 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋 ∈ (Base‘𝐾))
28 simp122 1298 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
2928adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌𝐴)
3021, 3atbase 36307 . . . . . . . . 9 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌 ∈ (Base‘𝐾))
32 simprrl 777 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → ¬ 𝑝 (𝑋(join‘𝐾)𝑌))
33 eqid 2821 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
3421, 2, 33latnlej1l 17669 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑋)
3520, 23, 27, 31, 32, 34syl131anc 1375 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑋)
3621, 2, 33latnlej1r 17670 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑌)
3720, 23, 27, 31, 32, 36syl131anc 1375 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑌)
38 simpl3 1185 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑍 (𝑋(join‘𝐾)𝑌))
39 nbrne2 5078 . . . . . . . . 9 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑍𝑝)
4039necomd 3071 . . . . . . . 8 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
4138, 32, 40syl2anc 584 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑍)
4235, 37, 413jca 1120 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
4317, 42jca 512 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
44 simp11 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simp131 1300 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
46 simp132 1301 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
47 eqid 2821 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
482, 47, 33, 3, 4lhp2lt 37019 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
4944, 24, 45, 28, 46, 48syl122anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5021, 33, 3hlatjcl 36385 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
5118, 24, 28, 50syl3anc 1363 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
52 simp11r 1277 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
5321, 4lhpbase 37016 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾))
5521, 2, 47, 3hlrelat1 36418 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5618, 51, 54, 55syl3anc 1363 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5749, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))
5843, 57reximddv 3275 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
59583expa 1110 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
60 simp11l 1276 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
6160adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
6261hllatd 36382 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
6322ad2antrl 724 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
64 simp121 1297 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
6564adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
66 simp122 1298 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
6766adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
6861, 65, 67, 50syl3anc 1363 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
69 simp11r 1277 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
7069adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
7170, 53syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
72 simprr3 1215 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
73 simp131 1300 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
7473adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
75 simp132 1301 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
7675adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
7765, 26syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
7867, 30syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
7921, 2, 33latjle12 17662 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8062, 77, 78, 71, 79syl13anc 1364 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8174, 76, 80mpbi2and 708 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
8221, 2, 62, 63, 68, 71, 72, 81lattrd 17658 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
83 simprr1 1213 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
84 simprr2 1214 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
85 simpl3 1185 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 (𝑋(join‘𝐾)𝑌))
86 nbrne2 5078 . . . . . . . 8 ((𝑝 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
8772, 85, 86syl2anc 584 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑍)
8883, 84, 873jca 1120 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
8982, 88jca 512 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
90 simp2 1129 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝑌)
912, 33, 3hlsupr 36404 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9260, 64, 66, 90, 91syl31anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9389, 92reximddv 3275 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
94933expa 1110 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9559, 94pm2.61dan 809 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9616, 95pm2.61dane 3104 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3016  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  ltcplt 17541  joincjn 17544  Latclat 17645  Atomscatm 36281  HLchlt 36368  LHypclh 37002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-lhyp 37006
This theorem is referenced by:  lhpexle3  37030
  Copyright terms: Public domain W3C validator