Proof of Theorem lhpexle3lem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1191 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | lhpex1.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | lhpex1.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | lhpex1.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 5 | 2, 3, 4 | lhpexle2 40013 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) | 
| 6 | 1, 5 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) | 
| 7 |  | simp31 1209 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → 𝑝 ≤ 𝑊) | 
| 8 |  | simp32 1210 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → 𝑝 ≠ 𝑋) | 
| 9 |  | simp1r 1198 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → 𝑋 = 𝑌) | 
| 10 | 8, 9 | neeqtrd 3009 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → 𝑝 ≠ 𝑌) | 
| 11 |  | simp33 1211 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → 𝑝 ≠ 𝑍) | 
| 12 | 8, 10, 11 | 3jca 1128 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍)) | 
| 13 | 7, 12 | jca 511 | . . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍)) → (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 14 | 13 | 3exp 1119 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝 ∈ 𝐴 → ((𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍) → (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))))) | 
| 15 | 14 | reximdvai 3164 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑍) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍)))) | 
| 16 | 6, 15 | mpd 15 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 17 |  | simprrr 781 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑝 ≤ 𝑊) | 
| 18 |  | simp11l 1284 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL) | 
| 19 | 18 | adantr 480 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝐾 ∈ HL) | 
| 20 | 19 | hllatd 39366 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝐾 ∈ Lat) | 
| 21 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 22 | 21, 3 | atbase 39291 | . . . . . . . . 9
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) | 
| 23 | 22 | ad2antrl 728 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑝 ∈ (Base‘𝐾)) | 
| 24 |  | simp121 1305 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋 ∈ 𝐴) | 
| 25 | 24 | adantr 480 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑋 ∈ 𝐴) | 
| 26 | 21, 3 | atbase 39291 | . . . . . . . . 9
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑋 ∈ (Base‘𝐾)) | 
| 28 |  | simp122 1306 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑌 ∈ 𝐴) | 
| 29 | 28 | adantr 480 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑌 ∈ 𝐴) | 
| 30 | 21, 3 | atbase 39291 | . . . . . . . . 9
⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) | 
| 31 | 29, 30 | syl 17 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑌 ∈ (Base‘𝐾)) | 
| 32 |  | simprrl 780 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → ¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) | 
| 33 |  | eqid 2736 | . . . . . . . . 9
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 34 | 21, 2, 33 | latnlej1l 18503 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑝 ≠ 𝑋) | 
| 35 | 20, 23, 27, 31, 32, 34 | syl131anc 1384 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑝 ≠ 𝑋) | 
| 36 | 21, 2, 33 | latnlej1r 18504 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑝 ≠ 𝑌) | 
| 37 | 20, 23, 27, 31, 32, 36 | syl131anc 1384 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑝 ≠ 𝑌) | 
| 38 |  | simpl3 1193 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) | 
| 39 |  | nbrne2 5162 | . . . . . . . . 9
⊢ ((𝑍 ≤ (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑍 ≠ 𝑝) | 
| 40 | 39 | necomd 2995 | . . . . . . . 8
⊢ ((𝑍 ≤ (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑝 ≠ 𝑍) | 
| 41 | 38, 32, 40 | syl2anc 584 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → 𝑝 ≠ 𝑍) | 
| 42 | 35, 37, 41 | 3jca 1128 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍)) | 
| 43 | 17, 42 | jca 511 | . . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) → (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 44 |  | simp11 1203 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 45 |  | simp131 1308 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋 ≤ 𝑊) | 
| 46 |  | simp132 1309 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑌 ≤ 𝑊) | 
| 47 |  | eqid 2736 | . . . . . . . 8
⊢
(lt‘𝐾) =
(lt‘𝐾) | 
| 48 | 2, 47, 33, 3, 4 | lhp2lt 40004 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊) | 
| 49 | 44, 24, 45, 28, 46, 48 | syl122anc 1380 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊) | 
| 50 | 21, 33, 3 | hlatjcl 39369 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾)) | 
| 51 | 18, 24, 28, 50 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾)) | 
| 52 |  | simp11r 1285 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ 𝐻) | 
| 53 | 21, 4 | lhpbase 40001 | . . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 54 | 52, 53 | syl 17 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾)) | 
| 55 | 21, 2, 47, 3 | hlrelat1 39403 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) | 
| 56 | 18, 51, 54, 55 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊))) | 
| 57 | 49, 56 | mpd 15 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ 𝑝 ≤ 𝑊)) | 
| 58 | 43, 57 | reximddv 3170 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 59 | 58 | 3expa 1118 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) ∧ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 60 |  | simp11l 1284 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL) | 
| 61 | 60 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL) | 
| 62 | 61 | hllatd 39366 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat) | 
| 63 | 22 | ad2antrl 728 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾)) | 
| 64 |  | simp121 1305 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋 ∈ 𝐴) | 
| 65 | 64 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ 𝐴) | 
| 66 |  | simp122 1306 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑌 ∈ 𝐴) | 
| 67 | 66 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ 𝐴) | 
| 68 | 61, 65, 67, 50 | syl3anc 1372 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾)) | 
| 69 |  | simp11r 1285 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ 𝐻) | 
| 70 | 69 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ 𝐻) | 
| 71 | 70, 53 | syl 17 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾)) | 
| 72 |  | simprr3 1223 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) | 
| 73 |  | simp131 1308 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋 ≤ 𝑊) | 
| 74 | 73 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ≤ 𝑊) | 
| 75 |  | simp132 1309 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑌 ≤ 𝑊) | 
| 76 | 75 | adantr 480 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ≤ 𝑊) | 
| 77 | 65, 26 | syl 17 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾)) | 
| 78 | 67, 30 | syl 17 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾)) | 
| 79 | 21, 2, 33 | latjle12 18496 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊) ↔ (𝑋(join‘𝐾)𝑌) ≤ 𝑊)) | 
| 80 | 62, 77, 78, 71, 79 | syl13anc 1373 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊) ↔ (𝑋(join‘𝐾)𝑌) ≤ 𝑊)) | 
| 81 | 74, 76, 80 | mpbi2and 712 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ≤ 𝑊) | 
| 82 | 21, 2, 62, 63, 68, 71, 72, 81 | lattrd 18492 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≤ 𝑊) | 
| 83 |  | simprr1 1221 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≠ 𝑋) | 
| 84 |  | simprr2 1222 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≠ 𝑌) | 
| 85 |  | simpl3 1193 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) | 
| 86 |  | nbrne2 5162 | . . . . . . . 8
⊢ ((𝑝 ≤ (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑝 ≠ 𝑍) | 
| 87 | 72, 85, 86 | syl2anc 584 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≠ 𝑍) | 
| 88 | 83, 84, 87 | 3jca 1128 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍)) | 
| 89 | 82, 88 | jca 511 | . . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) ∧ (𝑝 ∈ 𝐴 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 90 |  | simp2 1137 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋 ≠ 𝑌) | 
| 91 | 2, 33, 3 | hlsupr 39389 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌))) | 
| 92 | 60, 64, 66, 90, 91 | syl31anc 1374 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌))) | 
| 93 | 89, 92 | reximddv 3170 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌 ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 94 | 93 | 3expa 1118 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) ∧ ¬ 𝑍 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 95 | 59, 94 | pm2.61dan 812 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) | 
| 96 | 16, 95 | pm2.61dane 3028 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑍))) |