Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Visualization version   GIF version

Theorem lhpexle3lem 37255
Description: There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 37254 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
7 simp31 1206 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝 𝑊)
8 simp32 1207 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑋)
9 simp1r 1195 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑋 = 𝑌)
108, 9neeqtrd 3083 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑌)
11 simp33 1208 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑍)
128, 10, 113jca 1125 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝𝑋𝑝𝑌𝑝𝑍))
137, 12jca 515 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
14133exp 1116 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝𝐴 → ((𝑝 𝑊𝑝𝑋𝑝𝑍) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))))
1514reximdvai 3264 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍))))
166, 15mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
17 simprrr 781 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 𝑊)
18 simp11l 1281 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
1918adantr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ HL)
2019hllatd 36608 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ Lat)
21 eqid 2824 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2221, 3atbase 36533 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2322ad2antrl 727 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 ∈ (Base‘𝐾))
24 simp121 1302 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
2524adantr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋𝐴)
2621, 3atbase 36533 . . . . . . . . 9 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋 ∈ (Base‘𝐾))
28 simp122 1303 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
2928adantr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌𝐴)
3021, 3atbase 36533 . . . . . . . . 9 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌 ∈ (Base‘𝐾))
32 simprrl 780 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → ¬ 𝑝 (𝑋(join‘𝐾)𝑌))
33 eqid 2824 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
3421, 2, 33latnlej1l 17679 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑋)
3520, 23, 27, 31, 32, 34syl131anc 1380 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑋)
3621, 2, 33latnlej1r 17680 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑌)
3720, 23, 27, 31, 32, 36syl131anc 1380 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑌)
38 simpl3 1190 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑍 (𝑋(join‘𝐾)𝑌))
39 nbrne2 5072 . . . . . . . . 9 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑍𝑝)
4039necomd 3069 . . . . . . . 8 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
4138, 32, 40syl2anc 587 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑍)
4235, 37, 413jca 1125 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
4317, 42jca 515 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
44 simp11 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simp131 1305 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
46 simp132 1306 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
47 eqid 2824 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
482, 47, 33, 3, 4lhp2lt 37245 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
4944, 24, 45, 28, 46, 48syl122anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5021, 33, 3hlatjcl 36611 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
5118, 24, 28, 50syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
52 simp11r 1282 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
5321, 4lhpbase 37242 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾))
5521, 2, 47, 3hlrelat1 36644 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5618, 51, 54, 55syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5749, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))
5843, 57reximddv 3267 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
59583expa 1115 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
60 simp11l 1281 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
6160adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
6261hllatd 36608 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
6322ad2antrl 727 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
64 simp121 1302 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
6564adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
66 simp122 1303 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
6766adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
6861, 65, 67, 50syl3anc 1368 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
69 simp11r 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
7069adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
7170, 53syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
72 simprr3 1220 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
73 simp131 1305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
7473adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
75 simp132 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
7675adantr 484 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
7765, 26syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
7867, 30syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
7921, 2, 33latjle12 17672 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8062, 77, 78, 71, 79syl13anc 1369 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8174, 76, 80mpbi2and 711 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
8221, 2, 62, 63, 68, 71, 72, 81lattrd 17668 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
83 simprr1 1218 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
84 simprr2 1219 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
85 simpl3 1190 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 (𝑋(join‘𝐾)𝑌))
86 nbrne2 5072 . . . . . . . 8 ((𝑝 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
8772, 85, 86syl2anc 587 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑍)
8883, 84, 873jca 1125 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
8982, 88jca 515 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
90 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝑌)
912, 33, 3hlsupr 36630 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9260, 64, 66, 90, 91syl31anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9389, 92reximddv 3267 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
94933expa 1115 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9559, 94pm2.61dan 812 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9616, 95pm2.61dane 3101 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  lecple 16572  ltcplt 17551  joincjn 17554  Latclat 17655  Atomscatm 36507  HLchlt 36594  LHypclh 37228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36420  df-ol 36422  df-oml 36423  df-covers 36510  df-ats 36511  df-atl 36542  df-cvlat 36566  df-hlat 36595  df-lhyp 37232
This theorem is referenced by:  lhpexle3  37256
  Copyright terms: Public domain W3C validator