Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Visualization version   GIF version

Theorem lhpexle3lem 40012
Description: There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 40011 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
7 simp31 1210 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝 𝑊)
8 simp32 1211 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑋)
9 simp1r 1199 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑋 = 𝑌)
108, 9neeqtrd 2995 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑌)
11 simp33 1212 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑍)
128, 10, 113jca 1128 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝𝑋𝑝𝑌𝑝𝑍))
137, 12jca 511 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
14133exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝𝐴 → ((𝑝 𝑊𝑝𝑋𝑝𝑍) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))))
1514reximdvai 3145 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍))))
166, 15mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
17 simprrr 781 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 𝑊)
18 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
1918adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ HL)
2019hllatd 39364 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ Lat)
21 eqid 2730 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2221, 3atbase 39289 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2322ad2antrl 728 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 ∈ (Base‘𝐾))
24 simp121 1306 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
2524adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋𝐴)
2621, 3atbase 39289 . . . . . . . . 9 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋 ∈ (Base‘𝐾))
28 simp122 1307 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
2928adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌𝐴)
3021, 3atbase 39289 . . . . . . . . 9 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌 ∈ (Base‘𝐾))
32 simprrl 780 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → ¬ 𝑝 (𝑋(join‘𝐾)𝑌))
33 eqid 2730 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
3421, 2, 33latnlej1l 18423 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑋)
3520, 23, 27, 31, 32, 34syl131anc 1385 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑋)
3621, 2, 33latnlej1r 18424 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑌)
3720, 23, 27, 31, 32, 36syl131anc 1385 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑌)
38 simpl3 1194 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑍 (𝑋(join‘𝐾)𝑌))
39 nbrne2 5130 . . . . . . . . 9 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑍𝑝)
4039necomd 2981 . . . . . . . 8 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
4138, 32, 40syl2anc 584 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑍)
4235, 37, 413jca 1128 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
4317, 42jca 511 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
44 simp11 1204 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simp131 1309 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
46 simp132 1310 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
47 eqid 2730 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
482, 47, 33, 3, 4lhp2lt 40002 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
4944, 24, 45, 28, 46, 48syl122anc 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5021, 33, 3hlatjcl 39367 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
5118, 24, 28, 50syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
52 simp11r 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
5321, 4lhpbase 39999 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5452, 53syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾))
5521, 2, 47, 3hlrelat1 39401 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5618, 51, 54, 55syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5749, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))
5843, 57reximddv 3150 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
59583expa 1118 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
60 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
6160adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
6261hllatd 39364 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
6322ad2antrl 728 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
64 simp121 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
6564adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
66 simp122 1307 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
6766adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
6861, 65, 67, 50syl3anc 1373 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
69 simp11r 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
7069adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
7170, 53syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
72 simprr3 1224 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
73 simp131 1309 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
7473adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
75 simp132 1310 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
7675adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
7765, 26syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
7867, 30syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
7921, 2, 33latjle12 18416 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8062, 77, 78, 71, 79syl13anc 1374 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8174, 76, 80mpbi2and 712 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
8221, 2, 62, 63, 68, 71, 72, 81lattrd 18412 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
83 simprr1 1222 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
84 simprr2 1223 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
85 simpl3 1194 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 (𝑋(join‘𝐾)𝑌))
86 nbrne2 5130 . . . . . . . 8 ((𝑝 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
8772, 85, 86syl2anc 584 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑍)
8883, 84, 873jca 1128 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
8982, 88jca 511 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
90 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝑌)
912, 33, 3hlsupr 39387 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9260, 64, 66, 90, 91syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9389, 92reximddv 3150 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
94933expa 1118 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9559, 94pm2.61dan 812 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9616, 95pm2.61dane 3013 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  ltcplt 18276  joincjn 18279  Latclat 18397  Atomscatm 39263  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lhyp 39989
This theorem is referenced by:  lhpexle3  40013
  Copyright terms: Public domain W3C validator