MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1267
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1192 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1132 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8174  btwnconn1lem7  36075  btwnconn1lem12  36080  linethru  36135  hlrelat3  39395  cvrval3  39396  2atlt  39422  atbtwnex  39431  1cvratlt  39457  2llnmat  39507  lplnexllnN  39547  4atlem11  39592  lnjatN  39763  lncvrat  39765  lncmp  39766  cdlemd9  40189  dihord5b  41242  dihmeetALTN  41310  dih1dimatlem0  41311  mapdrvallem2  41628  grumnudlem  44281  itsclc0yqsol  48614  itschlc0xyqsol  48617
  Copyright terms: Public domain W3C validator