MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1134 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  poxp3  8136  btwnconn1lem7  35065  btwnconn1lem12  35070  linethru  35125  hlrelat3  38283  cvrval3  38284  2atlt  38310  atbtwnex  38319  1cvratlt  38345  2llnmat  38395  lplnexllnN  38435  4atlem11  38480  lnjatN  38651  lncvrat  38653  lncmp  38654  cdlemd9  39077  dihord5b  40130  dihmeetALTN  40198  dih1dimatlem0  40199  mapdrvallem2  40516  grumnudlem  43044  itsclc0yqsol  47450  itschlc0xyqsol  47453
  Copyright terms: Public domain W3C validator