MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8132  btwnconn1lem7  36088  btwnconn1lem12  36093  linethru  36148  hlrelat3  39413  cvrval3  39414  2atlt  39440  atbtwnex  39449  1cvratlt  39475  2llnmat  39525  lplnexllnN  39565  4atlem11  39610  lnjatN  39781  lncvrat  39783  lncmp  39784  cdlemd9  40207  dihord5b  41260  dihmeetALTN  41328  dih1dimatlem0  41329  mapdrvallem2  41646  grumnudlem  44281  itsclc0yqsol  48757  itschlc0xyqsol  48760
  Copyright terms: Public domain W3C validator