| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8132 btwnconn1lem7 36088 btwnconn1lem12 36093 linethru 36148 hlrelat3 39413 cvrval3 39414 2atlt 39440 atbtwnex 39449 1cvratlt 39475 2llnmat 39525 lplnexllnN 39565 4atlem11 39610 lnjatN 39781 lncvrat 39783 lncmp 39784 cdlemd9 40207 dihord5b 41260 dihmeetALTN 41328 dih1dimatlem0 41329 mapdrvallem2 41646 grumnudlem 44281 itsclc0yqsol 48757 itschlc0xyqsol 48760 |
| Copyright terms: Public domain | W3C validator |