| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8080 btwnconn1lem7 36137 btwnconn1lem12 36142 linethru 36197 hlrelat3 39521 cvrval3 39522 2atlt 39548 atbtwnex 39557 1cvratlt 39583 2llnmat 39633 lplnexllnN 39673 4atlem11 39718 lnjatN 39889 lncvrat 39891 lncmp 39892 cdlemd9 40315 dihord5b 41368 dihmeetALTN 41436 dih1dimatlem0 41437 mapdrvallem2 41754 grumnudlem 44388 itsclc0yqsol 48875 itschlc0xyqsol 48878 |
| Copyright terms: Public domain | W3C validator |