| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8129 btwnconn1lem7 36081 btwnconn1lem12 36086 linethru 36141 hlrelat3 39406 cvrval3 39407 2atlt 39433 atbtwnex 39442 1cvratlt 39468 2llnmat 39518 lplnexllnN 39558 4atlem11 39603 lnjatN 39774 lncvrat 39776 lncmp 39777 cdlemd9 40200 dihord5b 41253 dihmeetALTN 41321 dih1dimatlem0 41322 mapdrvallem2 41639 grumnudlem 44274 itsclc0yqsol 48753 itschlc0xyqsol 48756 |
| Copyright terms: Public domain | W3C validator |