MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1134 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  poxp3  8175  btwnconn1lem7  36094  btwnconn1lem12  36099  linethru  36154  hlrelat3  39414  cvrval3  39415  2atlt  39441  atbtwnex  39450  1cvratlt  39476  2llnmat  39526  lplnexllnN  39566  4atlem11  39611  lnjatN  39782  lncvrat  39784  lncmp  39785  cdlemd9  40208  dihord5b  41261  dihmeetALTN  41329  dih1dimatlem0  41330  mapdrvallem2  41647  grumnudlem  44304  itsclc0yqsol  48685  itschlc0xyqsol  48688
  Copyright terms: Public domain W3C validator