MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8129  btwnconn1lem7  36081  btwnconn1lem12  36086  linethru  36141  hlrelat3  39406  cvrval3  39407  2atlt  39433  atbtwnex  39442  1cvratlt  39468  2llnmat  39518  lplnexllnN  39558  4atlem11  39603  lnjatN  39774  lncvrat  39776  lncmp  39777  cdlemd9  40200  dihord5b  41253  dihmeetALTN  41321  dih1dimatlem0  41322  mapdrvallem2  41639  grumnudlem  44274  itsclc0yqsol  48753  itschlc0xyqsol  48756
  Copyright terms: Public domain W3C validator