| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8106 btwnconn1lem7 36054 btwnconn1lem12 36059 linethru 36114 hlrelat3 39379 cvrval3 39380 2atlt 39406 atbtwnex 39415 1cvratlt 39441 2llnmat 39491 lplnexllnN 39531 4atlem11 39576 lnjatN 39747 lncvrat 39749 lncmp 39750 cdlemd9 40173 dihord5b 41226 dihmeetALTN 41294 dih1dimatlem0 41295 mapdrvallem2 41612 grumnudlem 44247 itsclc0yqsol 48726 itschlc0xyqsol 48729 |
| Copyright terms: Public domain | W3C validator |