| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8147 btwnconn1lem7 36057 btwnconn1lem12 36062 linethru 36117 hlrelat3 39377 cvrval3 39378 2atlt 39404 atbtwnex 39413 1cvratlt 39439 2llnmat 39489 lplnexllnN 39529 4atlem11 39574 lnjatN 39745 lncvrat 39747 lncmp 39748 cdlemd9 40171 dihord5b 41224 dihmeetALTN 41292 dih1dimatlem0 41293 mapdrvallem2 41610 grumnudlem 44257 itsclc0yqsol 48692 itschlc0xyqsol 48695 |
| Copyright terms: Public domain | W3C validator |