Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: btwnconn1lem7 34395 btwnconn1lem12 34400 linethru 34455 hlrelat3 37426 cvrval3 37427 2atlt 37453 atbtwnex 37462 1cvratlt 37488 2llnmat 37538 lplnexllnN 37578 4atlem11 37623 lnjatN 37794 lncvrat 37796 lncmp 37797 cdlemd9 38220 dihord5b 39273 dihmeetALTN 39341 dih1dimatlem0 39342 mapdrvallem2 39659 grumnudlem 41903 itsclc0yqsol 46110 itschlc0xyqsol 46113 |
Copyright terms: Public domain | W3C validator |