Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: btwnconn1lem7 34392 btwnconn1lem12 34397 linethru 34452 hlrelat3 37423 cvrval3 37424 2atlt 37450 atbtwnex 37459 1cvratlt 37485 2llnmat 37535 lplnexllnN 37575 4atlem11 37620 lnjatN 37791 lncvrat 37793 lncmp 37794 cdlemd9 38217 dihord5b 39270 dihmeetALTN 39338 dih1dimatlem0 39339 mapdrvallem2 39656 grumnudlem 41873 itsclc0yqsol 46077 itschlc0xyqsol 46080 |
Copyright terms: Public domain | W3C validator |