![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1173 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant1 1113 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: btwnconn1lem7 33072 btwnconn1lem12 33077 linethru 33132 hlrelat3 35990 cvrval3 35991 2atlt 36017 atbtwnex 36026 1cvratlt 36052 2llnmat 36102 lplnexllnN 36142 4atlem11 36187 lnjatN 36358 lncvrat 36360 lncmp 36361 cdlemd9 36784 dihord5b 37837 dihmeetALTN 37905 dih1dimatlem0 37906 mapdrvallem2 38223 grumnudlem 39993 itsclc0yqsol 44117 itschlc0xyqsol 44120 |
Copyright terms: Public domain | W3C validator |