MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8106  btwnconn1lem7  36054  btwnconn1lem12  36059  linethru  36114  hlrelat3  39379  cvrval3  39380  2atlt  39406  atbtwnex  39415  1cvratlt  39441  2llnmat  39491  lplnexllnN  39531  4atlem11  39576  lnjatN  39747  lncvrat  39749  lncmp  39750  cdlemd9  40173  dihord5b  41226  dihmeetALTN  41294  dih1dimatlem0  41295  mapdrvallem2  41612  grumnudlem  44247  itsclc0yqsol  48726  itschlc0xyqsol  48729
  Copyright terms: Public domain W3C validator