| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8106 btwnconn1lem7 36074 btwnconn1lem12 36079 linethru 36134 hlrelat3 39399 cvrval3 39400 2atlt 39426 atbtwnex 39435 1cvratlt 39461 2llnmat 39511 lplnexllnN 39551 4atlem11 39596 lnjatN 39767 lncvrat 39769 lncmp 39770 cdlemd9 40193 dihord5b 41246 dihmeetALTN 41314 dih1dimatlem0 41315 mapdrvallem2 41632 grumnudlem 44267 itsclc0yqsol 48746 itschlc0xyqsol 48749 |
| Copyright terms: Public domain | W3C validator |