| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8149 btwnconn1lem7 36111 btwnconn1lem12 36116 linethru 36171 hlrelat3 39431 cvrval3 39432 2atlt 39458 atbtwnex 39467 1cvratlt 39493 2llnmat 39543 lplnexllnN 39583 4atlem11 39628 lnjatN 39799 lncvrat 39801 lncmp 39802 cdlemd9 40225 dihord5b 41278 dihmeetALTN 41346 dih1dimatlem0 41347 mapdrvallem2 41664 grumnudlem 44309 itsclc0yqsol 48744 itschlc0xyqsol 48747 |
| Copyright terms: Public domain | W3C validator |