MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1266
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1191 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1131 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  poxp3  8138  btwnconn1lem7  35369  btwnconn1lem12  35374  linethru  35429  hlrelat3  38586  cvrval3  38587  2atlt  38613  atbtwnex  38622  1cvratlt  38648  2llnmat  38698  lplnexllnN  38738  4atlem11  38783  lnjatN  38954  lncvrat  38956  lncmp  38957  cdlemd9  39380  dihord5b  40433  dihmeetALTN  40501  dih1dimatlem0  40502  mapdrvallem2  40819  grumnudlem  43346  itsclc0yqsol  47537  itschlc0xyqsol  47540
  Copyright terms: Public domain W3C validator