![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp3 8191 btwnconn1lem7 36057 btwnconn1lem12 36062 linethru 36117 hlrelat3 39369 cvrval3 39370 2atlt 39396 atbtwnex 39405 1cvratlt 39431 2llnmat 39481 lplnexllnN 39521 4atlem11 39566 lnjatN 39737 lncvrat 39739 lncmp 39740 cdlemd9 40163 dihord5b 41216 dihmeetALTN 41284 dih1dimatlem0 41285 mapdrvallem2 41602 grumnudlem 44254 itsclc0yqsol 48498 itschlc0xyqsol 48501 |
Copyright terms: Public domain | W3C validator |