Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: btwnconn1lem7 34322 btwnconn1lem12 34327 linethru 34382 hlrelat3 37353 cvrval3 37354 2atlt 37380 atbtwnex 37389 1cvratlt 37415 2llnmat 37465 lplnexllnN 37505 4atlem11 37550 lnjatN 37721 lncvrat 37723 lncmp 37724 cdlemd9 38147 dihord5b 39200 dihmeetALTN 39268 dih1dimatlem0 39269 mapdrvallem2 39586 grumnudlem 41792 itsclc0yqsol 45998 itschlc0xyqsol 46001 |
Copyright terms: Public domain | W3C validator |