MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8080  btwnconn1lem7  36137  btwnconn1lem12  36142  linethru  36197  hlrelat3  39521  cvrval3  39522  2atlt  39548  atbtwnex  39557  1cvratlt  39583  2llnmat  39633  lplnexllnN  39673  4atlem11  39718  lnjatN  39889  lncvrat  39891  lncmp  39892  cdlemd9  40315  dihord5b  41368  dihmeetALTN  41436  dih1dimatlem0  41437  mapdrvallem2  41754  grumnudlem  44388  itsclc0yqsol  48875  itschlc0xyqsol  48878
  Copyright terms: Public domain W3C validator