MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Structured version   Visualization version   GIF version

Theorem simp1l3 1269
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 1194 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8147  btwnconn1lem7  36057  btwnconn1lem12  36062  linethru  36117  hlrelat3  39377  cvrval3  39378  2atlt  39404  atbtwnex  39413  1cvratlt  39439  2llnmat  39489  lplnexllnN  39529  4atlem11  39574  lnjatN  39745  lncvrat  39747  lncmp  39748  cdlemd9  40171  dihord5b  41224  dihmeetALTN  41292  dih1dimatlem0  41293  mapdrvallem2  41610  grumnudlem  44257  itsclc0yqsol  48692  itschlc0xyqsol  48695
  Copyright terms: Public domain W3C validator