Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrat Structured version   Visualization version   GIF version

Theorem lncvrat 35580
Description: A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
lncvrat.b 𝐵 = (Base‘𝐾)
lncvrat.l = (le‘𝐾)
lncvrat.c 𝐶 = ( ⋖ ‘𝐾)
lncvrat.a 𝐴 = (Atoms‘𝐾)
lncvrat.n 𝑁 = (Lines‘𝐾)
lncvrat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncvrat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝑃𝐶𝑋)

Proof of Theorem lncvrat
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 778 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (𝑀𝑋) ∈ 𝑁)
2 simpl1 1235 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝐾 ∈ HL)
3 simpl2 1237 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝑋𝐵)
4 lncvrat.b . . . . 5 𝐵 = (Base‘𝐾)
5 eqid 2817 . . . . 5 (join‘𝐾) = (join‘𝐾)
6 lncvrat.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 lncvrat.n . . . . 5 𝑁 = (Lines‘𝐾)
8 lncvrat.m . . . . 5 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8isline3 35574 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
102, 3, 9syl2anc 575 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
111, 10mpbid 223 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)))
12 simp1l1 1358 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 simp1l3 1360 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
14 simp2l 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝐴)
15 simp2r 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟𝐴)
16 simp3l 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝑟)
17 simp1rr 1313 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 𝑋)
18 simp3r 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟))
1917, 18breqtrd 4881 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 (𝑞(join‘𝐾)𝑟))
20 lncvrat.l . . . . . . 7 = (le‘𝐾)
21 lncvrat.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
2220, 5, 21, 6atcvrj2 35231 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃 (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2312, 13, 14, 15, 16, 19, 22syl132anc 1500 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2423, 18breqtrrd 4883 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋)
25243exp 1141 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)))
2625rexlimdvv 3236 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝑃𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2989  wrex 3108   class class class wbr 4855  cfv 6110  (class class class)co 6883  Basecbs 16087  lecple 16179  joincjn 17168  ccvr 35060  Atomscatm 35061  HLchlt 35148  Linesclines 35292  pmapcpmap 35295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-riota 6844  df-ov 6886  df-oprab 6887  df-proset 17152  df-poset 17170  df-plt 17182  df-lub 17198  df-glb 17199  df-join 17200  df-meet 17201  df-p0 17263  df-lat 17270  df-clat 17332  df-oposet 34974  df-ol 34976  df-oml 34977  df-covers 35064  df-ats 35065  df-atl 35096  df-cvlat 35120  df-hlat 35149  df-lines 35299  df-pmap 35302
This theorem is referenced by:  2lnat  35582
  Copyright terms: Public domain W3C validator