Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atlt Structured version   Visualization version   GIF version

Theorem 2atlt 39422
Description: Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
2atomslt.b 𝐵 = (Base‘𝐾)
2atomslt.s < = (lt‘𝐾)
2atomslt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atlt (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐾,𝑞   𝑃,𝑞   < ,𝑞   𝑋,𝑞

Proof of Theorem 2atlt
StepHypRef Expression
1 2atomslt.b . . . 4 𝐵 = (Base‘𝐾)
2 2atomslt.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 39272 . . 3 (𝑃𝐴𝑃𝐵)
4 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
5 2atomslt.s . . . 4 < = (lt‘𝐾)
6 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
71, 4, 5, 6, 2hlrelat 39385 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐵𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋))
83, 7syl3anl2 1415 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋))
9 simp3l 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 < (𝑃(join‘𝐾)𝑞))
10 simp1l1 1267 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
11 simp1l2 1268 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝐴)
12 simp2 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝐴)
13 eqid 2729 . . . . . . . . . 10 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
145, 6, 2, 13atltcvr 39418 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑃𝐴𝑞𝐴)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1510, 11, 11, 12, 14syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
169, 15mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))
176, 13, 2atcvr1 39400 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃𝑞𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1810, 11, 12, 17syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃𝑞𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1916, 18mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝑞)
2019necomd 2980 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝑃)
215, 6, 2atlt 39420 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑃𝐴) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞𝑃))
2210, 12, 11, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞𝑃))
2320, 22mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑞(join‘𝐾)𝑃))
2410hllatd 39347 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Lat)
2511, 3syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝐵)
261, 2atbase 39272 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
27263ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝐵)
281, 6latjcom 18353 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑞𝐵) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃))
2924, 25, 27, 28syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃))
3023, 29breqtrrd 5120 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑃(join‘𝐾)𝑞))
31 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)
32 hlpos 39349 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3310, 32syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
341, 6latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑞𝐵) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵)
3524, 25, 27, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵)
36 simp1l3 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑋𝐵)
371, 4, 5pltletr 18247 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑞𝐵 ∧ (𝑃(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋))
3833, 27, 35, 36, 37syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋))
3930, 31, 38mp2and 699 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < 𝑋)
4020, 39jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞𝑃𝑞 < 𝑋))
41403exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → (𝑞𝐴 → ((𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → (𝑞𝑃𝑞 < 𝑋))))
4241reximdvai 3140 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → (∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋)))
438, 42mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  joincjn 18217  Latclat 18337  ccvr 39245  Atomscatm 39246  HLchlt 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334
This theorem is referenced by:  cdlemb  39777  lhpexle1  39991
  Copyright terms: Public domain W3C validator