Proof of Theorem 2atlt
Step | Hyp | Ref
| Expression |
1 | | 2atomslt.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | 2atomslt.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
3 | 1, 2 | atbase 37303 |
. . 3
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
4 | | eqid 2738 |
. . . 4
⊢
(le‘𝐾) =
(le‘𝐾) |
5 | | 2atomslt.s |
. . . 4
⊢ < =
(lt‘𝐾) |
6 | | eqid 2738 |
. . . 4
⊢
(join‘𝐾) =
(join‘𝐾) |
7 | 1, 4, 5, 6, 2 | hlrelat 37416 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) |
8 | 3, 7 | syl3anl2 1412 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) |
9 | | simp3l 1200 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 < (𝑃(join‘𝐾)𝑞)) |
10 | | simp1l1 1265 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ HL) |
11 | | simp1l2 1266 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 ∈ 𝐴) |
12 | | simp2 1136 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 ∈ 𝐴) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
14 | 5, 6, 2, 13 | atltcvr 37449 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))) |
15 | 10, 11, 11, 12, 14 | syl13anc 1371 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))) |
16 | 9, 15 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)) |
17 | 6, 13, 2 | atcvr1 37431 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) → (𝑃 ≠ 𝑞 ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))) |
18 | 10, 11, 12, 17 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃 ≠ 𝑞 ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))) |
19 | 16, 18 | mpbird 256 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 ≠ 𝑞) |
20 | 19 | necomd 2999 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 ≠ 𝑃) |
21 | 5, 6, 2 | atlt 37451 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞 ≠ 𝑃)) |
22 | 10, 12, 11, 21 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞 ≠ 𝑃)) |
23 | 20, 22 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑞(join‘𝐾)𝑃)) |
24 | 10 | hllatd 37378 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Lat) |
25 | 11, 3 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 ∈ 𝐵) |
26 | 1, 2 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵) |
27 | 26 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 ∈ 𝐵) |
28 | 1, 6 | latjcom 18165 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃)) |
29 | 24, 25, 27, 28 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃)) |
30 | 23, 29 | breqtrrd 5102 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑃(join‘𝐾)𝑞)) |
31 | | simp3r 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) |
32 | | hlpos 37380 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
33 | 10, 32 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Poset) |
34 | 1, 6 | latjcl 18157 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵) |
35 | 24, 25, 27, 34 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵) |
36 | | simp1l3 1267 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑋 ∈ 𝐵) |
37 | 1, 4, 5 | pltletr 18061 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ (𝑞 ∈ 𝐵 ∧ (𝑃(join‘𝐾)𝑞) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋)) |
38 | 33, 27, 35, 36, 37 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋)) |
39 | 30, 31, 38 | mp2and 696 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < 𝑋) |
40 | 20, 39 | jca 512 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞 ∈ 𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)) |
41 | 40 | 3exp 1118 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → (𝑞 ∈ 𝐴 → ((𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)))) |
42 | 41 | reximdvai 3200 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → (∃𝑞 ∈ 𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋))) |
43 | 8, 42 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)) |