Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atlt Structured version   Visualization version   GIF version

Theorem 2atlt 39440
Description: Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
2atomslt.b 𝐵 = (Base‘𝐾)
2atomslt.s < = (lt‘𝐾)
2atomslt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atlt (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐾,𝑞   𝑃,𝑞   < ,𝑞   𝑋,𝑞

Proof of Theorem 2atlt
StepHypRef Expression
1 2atomslt.b . . . 4 𝐵 = (Base‘𝐾)
2 2atomslt.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 39289 . . 3 (𝑃𝐴𝑃𝐵)
4 eqid 2730 . . . 4 (le‘𝐾) = (le‘𝐾)
5 2atomslt.s . . . 4 < = (lt‘𝐾)
6 eqid 2730 . . . 4 (join‘𝐾) = (join‘𝐾)
71, 4, 5, 6, 2hlrelat 39403 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐵𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋))
83, 7syl3anl2 1415 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋))
9 simp3l 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃 < (𝑃(join‘𝐾)𝑞))
10 simp1l1 1267 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
11 simp1l2 1268 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝐴)
12 simp2 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝐴)
13 eqid 2730 . . . . . . . . . 10 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
145, 6, 2, 13atltcvr 39436 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑃𝐴𝑞𝐴)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1510, 11, 11, 12, 14syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃 < (𝑃(join‘𝐾)𝑞) ↔ 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
169, 15mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞))
176, 13, 2atcvr1 39418 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃𝑞𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1810, 11, 12, 17syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃𝑞𝑃( ⋖ ‘𝐾)(𝑃(join‘𝐾)𝑞)))
1916, 18mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝑞)
2019necomd 2981 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝑃)
215, 6, 2atlt 39438 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑃𝐴) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞𝑃))
2210, 12, 11, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞 < (𝑞(join‘𝐾)𝑃) ↔ 𝑞𝑃))
2320, 22mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑞(join‘𝐾)𝑃))
2410hllatd 39364 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Lat)
2511, 3syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑃𝐵)
261, 2atbase 39289 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
27263ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞𝐵)
281, 6latjcom 18413 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑞𝐵) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃))
2924, 25, 27, 28syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) = (𝑞(join‘𝐾)𝑃))
3023, 29breqtrrd 5138 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < (𝑃(join‘𝐾)𝑞))
31 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)
32 hlpos 39366 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3310, 32syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
341, 6latjcl 18405 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑞𝐵) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵)
3524, 25, 27, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑃(join‘𝐾)𝑞) ∈ 𝐵)
36 simp1l3 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑋𝐵)
371, 4, 5pltletr 18309 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑞𝐵 ∧ (𝑃(join‘𝐾)𝑞) ∈ 𝐵𝑋𝐵)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋))
3833, 27, 35, 36, 37syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → ((𝑞 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → 𝑞 < 𝑋))
3930, 31, 38mp2and 699 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → 𝑞 < 𝑋)
4020, 39jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) ∧ 𝑞𝐴 ∧ (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋)) → (𝑞𝑃𝑞 < 𝑋))
41403exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → (𝑞𝐴 → ((𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → (𝑞𝑃𝑞 < 𝑋))))
4241reximdvai 3145 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → (∃𝑞𝐴 (𝑃 < (𝑃(join‘𝐾)𝑞) ∧ (𝑃(join‘𝐾)𝑞)(le‘𝐾)𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋)))
438, 42mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑞 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276  joincjn 18279  Latclat 18397  ccvr 39262  Atomscatm 39263  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351
This theorem is referenced by:  cdlemb  39795  lhpexle1  40009
  Copyright terms: Public domain W3C validator