![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratlt | Structured version Visualization version GIF version |
Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvratlt.b | ⊢ 𝐵 = (Base‘𝐾) |
1cvratlt.l | ⊢ ≤ = (le‘𝐾) |
1cvratlt.s | ⊢ < = (lt‘𝐾) |
1cvratlt.u | ⊢ 1 = (1.‘𝐾) |
1cvratlt.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
1cvratlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1cvratlt | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) | |
2 | simpl3 1193 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
3 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) | |
4 | 1cvratlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1cvratlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
6 | 1cvratlt.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
7 | 1cvratlt.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 1cvratlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 4, 5, 6, 7, 8 | 1cvratex 39430 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
10 | 1, 2, 3, 9 | syl3anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
11 | simp1l1 1266 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝐾 ∈ HL) | |
12 | simp1l2 1267 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ∈ 𝐴) | |
13 | simp2 1137 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 ∈ 𝐴) | |
14 | simp1l3 1268 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑋 ∈ 𝐵) | |
15 | simp1rr 1239 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ≤ 𝑋) | |
16 | simp3 1138 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 < 𝑋) | |
17 | 1cvratlt.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
18 | 4, 17, 5, 8 | atlelt 39395 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 < 𝑋)) → 𝑃 < 𝑋) |
19 | 11, 12, 13, 14, 15, 16, 18 | syl132anc 1388 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 < 𝑋) |
20 | 19 | rexlimdv3a 3165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 𝑞 < 𝑋 → 𝑃 < 𝑋)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 ltcplt 18378 1.cp1 18494 ⋖ ccvr 39218 Atomscatm 39219 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: cdlemb 39751 lhplt 39957 |
Copyright terms: Public domain | W3C validator |