Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratlt Structured version   Visualization version   GIF version

Theorem 1cvratlt 36646
 Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvratlt.b 𝐵 = (Base‘𝐾)
1cvratlt.l = (le‘𝐾)
1cvratlt.s < = (lt‘𝐾)
1cvratlt.u 1 = (1.‘𝐾)
1cvratlt.c 𝐶 = ( ⋖ ‘𝐾)
1cvratlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratlt (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)

Proof of Theorem 1cvratlt
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝐾 ∈ HL)
2 simpl3 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐵)
3 simprl 769 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐶 1 )
4 1cvratlt.b . . . 4 𝐵 = (Base‘𝐾)
5 1cvratlt.s . . . 4 < = (lt‘𝐾)
6 1cvratlt.u . . . 4 1 = (1.‘𝐾)
7 1cvratlt.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 1cvratlt.a . . . 4 𝐴 = (Atoms‘𝐾)
94, 5, 6, 7, 81cvratex 36645 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴 𝑞 < 𝑋)
101, 2, 3, 9syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → ∃𝑞𝐴 𝑞 < 𝑋)
11 simp1l1 1262 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝐾 ∈ HL)
12 simp1l2 1263 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃𝐴)
13 simp2 1133 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞𝐴)
14 simp1l3 1264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑋𝐵)
15 simp1rr 1235 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 𝑋)
16 simp3 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞 < 𝑋)
17 1cvratlt.l . . . . 5 = (le‘𝐾)
184, 17, 5, 8atlelt 36610 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑞 < 𝑋)) → 𝑃 < 𝑋)
1911, 12, 13, 14, 15, 16, 18syl132anc 1384 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 < 𝑋)
2019rexlimdv3a 3273 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → (∃𝑞𝐴 𝑞 < 𝑋𝑃 < 𝑋))
2110, 20mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  ∃wrex 3126   class class class wbr 5042  ‘cfv 6331  Basecbs 16462  lecple 16551  ltcplt 17530  1.cp1 17627   ⋖ ccvr 36434  Atomscatm 36435  HLchlt 36522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523 This theorem is referenced by:  cdlemb  36966  lhplt  37172
 Copyright terms: Public domain W3C validator