Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratlt Structured version   Visualization version   GIF version

Theorem 1cvratlt 37474
Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvratlt.b 𝐵 = (Base‘𝐾)
1cvratlt.l = (le‘𝐾)
1cvratlt.s < = (lt‘𝐾)
1cvratlt.u 1 = (1.‘𝐾)
1cvratlt.c 𝐶 = ( ⋖ ‘𝐾)
1cvratlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratlt (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)

Proof of Theorem 1cvratlt
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝐾 ∈ HL)
2 simpl3 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐵)
3 simprl 768 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑋𝐶 1 )
4 1cvratlt.b . . . 4 𝐵 = (Base‘𝐾)
5 1cvratlt.s . . . 4 < = (lt‘𝐾)
6 1cvratlt.u . . . 4 1 = (1.‘𝐾)
7 1cvratlt.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 1cvratlt.a . . . 4 𝐴 = (Atoms‘𝐾)
94, 5, 6, 7, 81cvratex 37473 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴 𝑞 < 𝑋)
101, 2, 3, 9syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → ∃𝑞𝐴 𝑞 < 𝑋)
11 simp1l1 1265 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝐾 ∈ HL)
12 simp1l2 1266 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃𝐴)
13 simp2 1136 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞𝐴)
14 simp1l3 1267 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑋𝐵)
15 simp1rr 1238 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 𝑋)
16 simp3 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑞 < 𝑋)
17 1cvratlt.l . . . . 5 = (le‘𝐾)
184, 17, 5, 8atlelt 37438 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ (𝑃 𝑋𝑞 < 𝑋)) → 𝑃 < 𝑋)
1911, 12, 13, 14, 15, 16, 18syl132anc 1387 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) ∧ 𝑞𝐴𝑞 < 𝑋) → 𝑃 < 𝑋)
2019rexlimdv3a 3213 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → (∃𝑞𝐴 𝑞 < 𝑋𝑃 < 𝑋))
2110, 20mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑋𝐶 1𝑃 𝑋)) → 𝑃 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6427  Basecbs 16900  lecple 16957  ltcplt 18014  1.cp1 18130  ccvr 37262  Atomscatm 37263  HLchlt 37350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 18001  df-poset 18019  df-plt 18036  df-lub 18052  df-glb 18053  df-join 18054  df-meet 18055  df-p0 18131  df-p1 18132  df-lat 18138  df-clat 18205  df-oposet 37176  df-ol 37178  df-oml 37179  df-covers 37266  df-ats 37267  df-atl 37298  df-cvlat 37322  df-hlat 37351
This theorem is referenced by:  cdlemb  37794  lhplt  38000
  Copyright terms: Public domain W3C validator