| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratlt | Structured version Visualization version GIF version | ||
| Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
| Ref | Expression |
|---|---|
| 1cvratlt.b | ⊢ 𝐵 = (Base‘𝐾) |
| 1cvratlt.l | ⊢ ≤ = (le‘𝐾) |
| 1cvratlt.s | ⊢ < = (lt‘𝐾) |
| 1cvratlt.u | ⊢ 1 = (1.‘𝐾) |
| 1cvratlt.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 1cvratlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 1cvratlt | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) | |
| 2 | simpl3 1194 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
| 3 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) | |
| 4 | 1cvratlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 1cvratlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 6 | 1cvratlt.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 7 | 1cvratlt.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | 1cvratlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | 1cvratex 39491 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
| 11 | simp1l1 1267 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝐾 ∈ HL) | |
| 12 | simp1l2 1268 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ∈ 𝐴) | |
| 13 | simp2 1137 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 ∈ 𝐴) | |
| 14 | simp1l3 1269 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑋 ∈ 𝐵) | |
| 15 | simp1rr 1240 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ≤ 𝑋) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 < 𝑋) | |
| 17 | 1cvratlt.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 18 | 4, 17, 5, 8 | atlelt 39456 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 < 𝑋)) → 𝑃 < 𝑋) |
| 19 | 11, 12, 13, 14, 15, 16, 18 | syl132anc 1390 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 < 𝑋) |
| 20 | 19 | rexlimdv3a 3135 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 𝑞 < 𝑋 → 𝑃 < 𝑋)) |
| 21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 class class class wbr 5089 ‘cfv 6477 Basecbs 17112 lecple 17160 ltcplt 18206 1.cp1 18320 ⋖ ccvr 39280 Atomscatm 39281 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 |
| This theorem is referenced by: cdlemb 39812 lhplt 40018 |
| Copyright terms: Public domain | W3C validator |