| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratlt | Structured version Visualization version GIF version | ||
| Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
| Ref | Expression |
|---|---|
| 1cvratlt.b | ⊢ 𝐵 = (Base‘𝐾) |
| 1cvratlt.l | ⊢ ≤ = (le‘𝐾) |
| 1cvratlt.s | ⊢ < = (lt‘𝐾) |
| 1cvratlt.u | ⊢ 1 = (1.‘𝐾) |
| 1cvratlt.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 1cvratlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 1cvratlt | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) | |
| 2 | simpl3 1194 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
| 3 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) | |
| 4 | 1cvratlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 1cvratlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 6 | 1cvratlt.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 7 | 1cvratlt.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | 1cvratlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | 1cvratex 39467 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
| 11 | simp1l1 1267 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝐾 ∈ HL) | |
| 12 | simp1l2 1268 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ∈ 𝐴) | |
| 13 | simp2 1137 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 ∈ 𝐴) | |
| 14 | simp1l3 1269 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑋 ∈ 𝐵) | |
| 15 | simp1rr 1240 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ≤ 𝑋) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 < 𝑋) | |
| 17 | 1cvratlt.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 18 | 4, 17, 5, 8 | atlelt 39432 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 < 𝑋)) → 𝑃 < 𝑋) |
| 19 | 11, 12, 13, 14, 15, 16, 18 | syl132anc 1390 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 < 𝑋) |
| 20 | 19 | rexlimdv3a 3138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 𝑞 < 𝑋 → 𝑃 < 𝑋)) |
| 21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 ltcplt 18269 1.cp1 18383 ⋖ ccvr 39255 Atomscatm 39256 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: cdlemb 39788 lhplt 39994 |
| Copyright terms: Public domain | W3C validator |