Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratlt | Structured version Visualization version GIF version |
Description: An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvratlt.b | ⊢ 𝐵 = (Base‘𝐾) |
1cvratlt.l | ⊢ ≤ = (le‘𝐾) |
1cvratlt.s | ⊢ < = (lt‘𝐾) |
1cvratlt.u | ⊢ 1 = (1.‘𝐾) |
1cvratlt.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
1cvratlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1cvratlt | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) | |
2 | simpl3 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
3 | simprl 768 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑋𝐶 1 ) | |
4 | 1cvratlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1cvratlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
6 | 1cvratlt.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
7 | 1cvratlt.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | 1cvratlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 4, 5, 6, 7, 8 | 1cvratex 37487 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
10 | 1, 2, 3, 9 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 𝑞 < 𝑋) |
11 | simp1l1 1265 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝐾 ∈ HL) | |
12 | simp1l2 1266 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ∈ 𝐴) | |
13 | simp2 1136 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 ∈ 𝐴) | |
14 | simp1l3 1267 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑋 ∈ 𝐵) | |
15 | simp1rr 1238 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 ≤ 𝑋) | |
16 | simp3 1137 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑞 < 𝑋) | |
17 | 1cvratlt.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
18 | 4, 17, 5, 8 | atlelt 37452 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 < 𝑋)) → 𝑃 < 𝑋) |
19 | 11, 12, 13, 14, 15, 16, 18 | syl132anc 1387 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 < 𝑋) → 𝑃 < 𝑋) |
20 | 19 | rexlimdv3a 3215 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 𝑞 < 𝑋 → 𝑃 < 𝑋)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 ltcplt 18026 1.cp1 18142 ⋖ ccvr 37276 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: cdlemb 37808 lhplt 38014 |
Copyright terms: Public domain | W3C validator |