Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd9 Structured version   Visualization version   GIF version

Theorem cdlemd9 35984
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l = (le‘𝐾)
cdlemd4.j = (join‘𝐾)
cdlemd4.a 𝐴 = (Atoms‘𝐾)
cdlemd4.h 𝐻 = (LHyp‘𝐾)
cdlemd4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd9
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1235 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) = 𝑃) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
2 simpl2 1237 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simpl3 1239 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = (𝐺𝑃))
4 simpr 473 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
5 cdlemd4.l . . . 4 = (le‘𝐾)
6 cdlemd4.j . . . 4 = (join‘𝐾)
7 cdlemd4.a . . . 4 𝐴 = (Atoms‘𝐾)
8 cdlemd4.h . . . 4 𝐻 = (LHyp‘𝐾)
9 cdlemd4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
105, 6, 7, 8, 9cdlemd8 35983 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))
111, 2, 3, 4, 10syl112anc 1486 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑅) = (𝐺𝑅))
12 simpl11 1322 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2 1237 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
14 simp12l 1378 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹𝑇)
1514adantr 468 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
165, 7, 8, 9ltrnel 35917 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1712, 15, 13, 16syl3anc 1483 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
18 simpr 473 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
1918necomd 3033 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃 ≠ (𝐹𝑃))
205, 6, 7, 8cdlemb2 35819 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) ∧ 𝑃 ≠ (𝐹𝑃)) → ∃𝑠𝐴𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃))))
2112, 13, 17, 19, 20syl121anc 1487 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → ∃𝑠𝐴𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃))))
22 simp1l1 1358 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
23 simp1l2 1359 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
24 simp2 1160 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → 𝑠𝐴)
25 simp3l 1251 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → ¬ 𝑠 𝑊)
2624, 25jca 503 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
27 simp1l3 1360 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → (𝐹𝑃) = (𝐺𝑃))
28 simp3r 1252 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → ¬ 𝑠 (𝑃 (𝐹𝑃)))
295, 6, 7, 8, 9cdlemd7 35982 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → (𝐹𝑅) = (𝐺𝑅))
3022, 23, 26, 27, 28, 29syl122anc 1491 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) ∧ 𝑠𝐴 ∧ (¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃)))) → (𝐹𝑅) = (𝐺𝑅))
3130rexlimdv3a 3221 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → (∃𝑠𝐴𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 (𝐹𝑃))) → (𝐹𝑅) = (𝐺𝑅)))
3221, 31mpd 15 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑅) = (𝐺𝑅))
3311, 32pm2.61dane 3065 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097   class class class wbr 4844  cfv 6097  (class class class)co 6870  lecple 16156  joincjn 17145  Atomscatm 35041  HLchlt 35128  LHypclh 35762  LTrncltrn 35879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-map 8090  df-proset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34954  df-ol 34956  df-oml 34957  df-covers 35044  df-ats 35045  df-atl 35076  df-cvlat 35100  df-hlat 35129  df-llines 35276  df-psubsp 35281  df-pmap 35282  df-padd 35574  df-lhyp 35766  df-laut 35767  df-ldil 35882  df-ltrn 35883  df-trl 35937
This theorem is referenced by:  cdlemd  35985
  Copyright terms: Public domain W3C validator