Step | Hyp | Ref
| Expression |
1 | | ellines 34440 |
. . 3
⊢ (𝐴 ∈ LinesEE ↔
∃𝑛 ∈ ℕ
∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏))) |
2 | | simpll1 1211 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑛 ∈ ℕ) |
3 | | simpll2 1212 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑎 ∈ (𝔼‘𝑛)) |
4 | | simpll3 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑏 ∈ (𝔼‘𝑛)) |
5 | | simplr 766 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑎 ≠ 𝑏) |
6 | | liness 34433 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛)) |
7 | 2, 3, 4, 5, 6 | syl13anc 1371 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛)) |
8 | | simprll 776 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑎Line𝑏)) |
9 | 7, 8 | sseldd 3922 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝔼‘𝑛)) |
10 | | simprlr 777 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑎Line𝑏)) |
11 | 7, 10 | sseldd 3922 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝔼‘𝑛)) |
12 | | simplll 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏)) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏)) |
14 | | simpll1 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ) |
15 | | simpll2 1212 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛)) |
16 | | simpll3 1213 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛)) |
17 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ≠ 𝑏) |
18 | | simprrl 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛)) |
19 | | simprlr 777 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ≠ 𝑎) |
20 | 19 | necomd 2999 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ≠ 𝑃) |
21 | | lineelsb2 34436 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃))) |
22 | 14, 15, 16, 17, 18, 20, 21 | syl132anc 1387 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃))) |
23 | 13, 22 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃)) |
24 | | linecom 34438 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎)) |
25 | 14, 15, 18, 20, 24 | syl13anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎)) |
26 | 23, 25 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎)) |
27 | | neeq2 3007 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 = 𝑎 → (𝑃 ≠ 𝑄 ↔ 𝑃 ≠ 𝑎)) |
28 | 27 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎))) |
29 | 28 | anbi1d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))) |
30 | 29 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))) |
31 | | oveq2 7276 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎)) |
32 | 31 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎))) |
33 | 30, 32 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎)))) |
34 | 26, 33 | mpbiri 257 |
. . . . . . . . . . . 12
⊢ (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
35 | | simp1 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏)) |
36 | | simp2l 1198 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) |
37 | 35, 36, 10 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ∈ (𝑎Line𝑏)) |
38 | | simp1l1 1265 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑛 ∈ ℕ) |
39 | | simp1l2 1266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ∈ (𝔼‘𝑛)) |
40 | | simp1l3 1267 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑏 ∈ (𝔼‘𝑛)) |
41 | | simp1r 1197 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ≠ 𝑏) |
42 | | simp2rr 1242 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ∈ (𝔼‘𝑛)) |
43 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ≠ 𝑎) |
44 | 43 | necomd 2999 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ≠ 𝑄) |
45 | | lineelsb2 34436 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄))) |
46 | 38, 39, 40, 41, 42, 44, 45 | syl132anc 1387 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄))) |
47 | 37, 46 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄)) |
48 | | linecom 34438 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎)) |
49 | 38, 39, 42, 44, 48 | syl13anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎)) |
50 | 47, 49 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎)) |
51 | 36 | simplld 765 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝑎Line𝑏)) |
52 | 51, 50 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝑄Line𝑎)) |
53 | | simp2rl 1241 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝔼‘𝑛)) |
54 | | simp2lr 1240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ≠ 𝑄) |
55 | 54 | necomd 2999 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ≠ 𝑃) |
56 | | lineelsb2 34436 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))) |
57 | 38, 42, 39, 43, 53, 55, 56 | syl132anc 1387 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))) |
58 | 52, 57 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)) |
59 | | linecom 34438 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄)) |
60 | 38, 42, 53, 55, 59 | syl13anc 1371 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄)) |
61 | 50, 58, 60 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
62 | 61 | 3expa 1117 |
. . . . . . . . . . . . 13
⊢
(((((𝑛 ∈
ℕ ∧ 𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛)) ∧
𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
63 | 62 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑄 ≠ 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
64 | 34, 63 | pm2.61ine 3028 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
65 | 64 | expr 457 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
66 | 9, 11, 65 | mp2and 696 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
67 | 66 | ex 413 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
68 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑎Line𝑏) → (𝑃 ∈ 𝐴 ↔ 𝑃 ∈ (𝑎Line𝑏))) |
69 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑎Line𝑏) → (𝑄 ∈ 𝐴 ↔ 𝑄 ∈ (𝑎Line𝑏))) |
70 | 68, 69 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝐴 = (𝑎Line𝑏) → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)))) |
71 | 70 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝐴 = (𝑎Line𝑏) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄))) |
72 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄))) |
73 | 71, 72 | imbi12d 345 |
. . . . . . . 8
⊢ (𝐴 = (𝑎Line𝑏) → ((((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))) |
74 | 67, 73 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
75 | 74 | expimpd 454 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
76 | 75 | 3expa 1117 |
. . . . 5
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
77 | 76 | rexlimdva 3211 |
. . . 4
⊢ ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
78 | 77 | rexlimivv 3219 |
. . 3
⊢
(∃𝑛 ∈
ℕ ∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄))) |
79 | 1, 78 | sylbi 216 |
. 2
⊢ (𝐴 ∈ LinesEE → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄))) |
80 | 79 | 3impib 1115 |
1
⊢ ((𝐴 ∈ LinesEE ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)) |