| Step | Hyp | Ref
| Expression |
| 1 | | ellines 36094 |
. . 3
⊢ (𝐴 ∈ LinesEE ↔
∃𝑛 ∈ ℕ
∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏))) |
| 2 | | simpll1 1212 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑛 ∈ ℕ) |
| 3 | | simpll2 1213 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑎 ∈ (𝔼‘𝑛)) |
| 4 | | simpll3 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑏 ∈ (𝔼‘𝑛)) |
| 5 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑎 ≠ 𝑏) |
| 6 | | liness 36087 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛)) |
| 7 | 2, 3, 4, 5, 6 | syl13anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛)) |
| 8 | | simprll 778 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑎Line𝑏)) |
| 9 | 7, 8 | sseldd 3966 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝔼‘𝑛)) |
| 10 | | simprlr 779 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑎Line𝑏)) |
| 11 | 7, 10 | sseldd 3966 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝔼‘𝑛)) |
| 12 | | simplll 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏)) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏)) |
| 14 | | simpll1 1212 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ) |
| 15 | | simpll2 1213 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛)) |
| 16 | | simpll3 1214 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛)) |
| 17 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ≠ 𝑏) |
| 18 | | simprrl 780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛)) |
| 19 | | simprlr 779 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ≠ 𝑎) |
| 20 | 19 | necomd 2986 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ≠ 𝑃) |
| 21 | | lineelsb2 36090 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃))) |
| 22 | 14, 15, 16, 17, 18, 20, 21 | syl132anc 1389 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃))) |
| 23 | 13, 22 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃)) |
| 24 | | linecom 36092 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎)) |
| 25 | 14, 15, 18, 20, 24 | syl13anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎)) |
| 26 | 23, 25 | eqtrd 2769 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎)) |
| 27 | | neeq2 2994 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 = 𝑎 → (𝑃 ≠ 𝑄 ↔ 𝑃 ≠ 𝑎)) |
| 28 | 27 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎))) |
| 29 | 28 | anbi1d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))) |
| 30 | 29 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))) |
| 31 | | oveq2 7422 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎)) |
| 32 | 31 | eqeq2d 2745 |
. . . . . . . . . . . . . 14
⊢ (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎))) |
| 33 | 30, 32 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎)))) |
| 34 | 26, 33 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
| 35 | | simp1 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏)) |
| 36 | | simp2l 1199 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) |
| 37 | 35, 36, 10 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ∈ (𝑎Line𝑏)) |
| 38 | | simp1l1 1266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑛 ∈ ℕ) |
| 39 | | simp1l2 1267 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ∈ (𝔼‘𝑛)) |
| 40 | | simp1l3 1268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑏 ∈ (𝔼‘𝑛)) |
| 41 | | simp1r 1198 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ≠ 𝑏) |
| 42 | | simp2rr 1243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ∈ (𝔼‘𝑛)) |
| 43 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ≠ 𝑎) |
| 44 | 43 | necomd 2986 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑎 ≠ 𝑄) |
| 45 | | lineelsb2 36090 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄))) |
| 46 | 38, 39, 40, 41, 42, 44, 45 | syl132anc 1389 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄))) |
| 47 | 37, 46 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄)) |
| 48 | | linecom 36092 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎)) |
| 49 | 38, 39, 42, 44, 48 | syl13anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎)) |
| 50 | 47, 49 | eqtrd 2769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎)) |
| 51 | 36 | simplld 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝑎Line𝑏)) |
| 52 | 51, 50 | eleqtrd 2835 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝑄Line𝑎)) |
| 53 | | simp2rl 1242 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ∈ (𝔼‘𝑛)) |
| 54 | | simp2lr 1241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑃 ≠ 𝑄) |
| 55 | 54 | necomd 2986 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → 𝑄 ≠ 𝑃) |
| 56 | | lineelsb2 36090 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))) |
| 57 | 38, 42, 39, 43, 53, 55, 56 | syl132anc 1389 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))) |
| 58 | 52, 57 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)) |
| 59 | | linecom 36092 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ≠ 𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄)) |
| 60 | 38, 42, 53, 55, 59 | syl13anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄)) |
| 61 | 50, 58, 60 | 3eqtrd 2773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
| 62 | 61 | 3expa 1118 |
. . . . . . . . . . . . 13
⊢
(((((𝑛 ∈
ℕ ∧ 𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛)) ∧
𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄 ≠ 𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
| 63 | 62 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑄 ≠ 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
| 64 | 34, 63 | pm2.61ine 3014 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
| 65 | 64 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
| 66 | 9, 11, 65 | mp2and 699 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄)) |
| 67 | 66 | ex 412 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))) |
| 68 | | eleq2 2822 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑎Line𝑏) → (𝑃 ∈ 𝐴 ↔ 𝑃 ∈ (𝑎Line𝑏))) |
| 69 | | eleq2 2822 |
. . . . . . . . . . 11
⊢ (𝐴 = (𝑎Line𝑏) → (𝑄 ∈ 𝐴 ↔ 𝑄 ∈ (𝑎Line𝑏))) |
| 70 | 68, 69 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝐴 = (𝑎Line𝑏) → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)))) |
| 71 | 70 | anbi1d 631 |
. . . . . . . . 9
⊢ (𝐴 = (𝑎Line𝑏) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄))) |
| 72 | | eqeq1 2738 |
. . . . . . . . 9
⊢ (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄))) |
| 73 | 71, 72 | imbi12d 344 |
. . . . . . . 8
⊢ (𝐴 = (𝑎Line𝑏) → ((((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃 ≠ 𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))) |
| 74 | 67, 73 | syl5ibrcom 247 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎 ≠ 𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
| 75 | 74 | expimpd 453 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
| 76 | 75 | 3expa 1118 |
. . . . 5
⊢ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
| 77 | 76 | rexlimdva 3142 |
. . . 4
⊢ ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)))) |
| 78 | 77 | rexlimivv 3188 |
. . 3
⊢
(∃𝑛 ∈
ℕ ∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎 ≠ 𝑏 ∧ 𝐴 = (𝑎Line𝑏)) → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄))) |
| 79 | 1, 78 | sylbi 217 |
. 2
⊢ (𝐴 ∈ LinesEE → (((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄))) |
| 80 | 79 | 3impib 1116 |
1
⊢ ((𝐴 ∈ LinesEE ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)) |