Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Visualization version   GIF version

Theorem linethru 34441
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))

Proof of Theorem linethru
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 34440 . . 3 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)))
2 simpll1 1211 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑛 ∈ ℕ)
3 simpll2 1212 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎 ∈ (𝔼‘𝑛))
4 simpll3 1213 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑏 ∈ (𝔼‘𝑛))
5 simplr 766 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎𝑏)
6 liness 34433 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
72, 3, 4, 5, 6syl13anc 1371 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
8 simprll 776 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑎Line𝑏))
97, 8sseldd 3922 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝔼‘𝑛))
10 simprlr 777 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑎Line𝑏))
117, 10sseldd 3922 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝔼‘𝑛))
12 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏))
1312adantl 482 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏))
14 simpll1 1211 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ)
15 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛))
16 simpll3 1213 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛))
17 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑏)
18 simprrl 778 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛))
19 simprlr 777 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃𝑎)
2019necomd 2999 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑃)
21 lineelsb2 34436 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2214, 15, 16, 17, 18, 20, 21syl132anc 1387 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2313, 22mpd 15 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃))
24 linecom 34438 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎))
2514, 15, 18, 20, 24syl13anc 1371 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎))
2623, 25eqtrd 2778 . . . . . . . . . . . . 13 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))
27 neeq2 3007 . . . . . . . . . . . . . . . . 17 (𝑄 = 𝑎 → (𝑃𝑄𝑃𝑎))
2827anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎)))
2928anbi1d 630 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))
3029anbi2d 629 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))))
31 oveq2 7276 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎))
3231eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎)))
3330, 32imbi12d 345 . . . . . . . . . . . . 13 (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))))
3426, 33mpbiri 257 . . . . . . . . . . . 12 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
35 simp1 1135 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏))
36 simp2l 1198 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄))
3735, 36, 10syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝑎Line𝑏))
38 simp1l1 1265 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑛 ∈ ℕ)
39 simp1l2 1266 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎 ∈ (𝔼‘𝑛))
40 simp1l3 1267 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑏 ∈ (𝔼‘𝑛))
41 simp1r 1197 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑏)
42 simp2rr 1242 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝔼‘𝑛))
43 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑎)
4443necomd 2999 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑄)
45 lineelsb2 34436 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4638, 39, 40, 41, 42, 44, 45syl132anc 1387 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4737, 46mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄))
48 linecom 34438 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎))
4938, 39, 42, 44, 48syl13anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎))
5047, 49eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎))
5136simplld 765 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑎Line𝑏))
5251, 50eleqtrd 2841 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑄Line𝑎))
53 simp2rl 1241 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝔼‘𝑛))
54 simp2lr 1240 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃𝑄)
5554necomd 2999 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑃)
56 lineelsb2 34436 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5738, 42, 39, 43, 53, 55, 56syl132anc 1387 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5852, 57mpd 15 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))
59 linecom 34438 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄))
6038, 42, 53, 55, 59syl13anc 1371 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄))
6150, 58, 603eqtrd 2782 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
62613expa 1117 . . . . . . . . . . . . 13 (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
6362expcom 414 . . . . . . . . . . . 12 (𝑄𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
6434, 63pm2.61ine 3028 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))
6564expr 457 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄)))
669, 11, 65mp2and 696 . . . . . . . . 9 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄))
6766ex 413 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))
68 eleq2 2827 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑃𝐴𝑃 ∈ (𝑎Line𝑏)))
69 eleq2 2827 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑄𝐴𝑄 ∈ (𝑎Line𝑏)))
7068, 69anbi12d 631 . . . . . . . . . 10 (𝐴 = (𝑎Line𝑏) → ((𝑃𝐴𝑄𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏))))
7170anbi1d 630 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)))
72 eqeq1 2742 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄)))
7371, 72imbi12d 345 . . . . . . . 8 (𝐴 = (𝑎Line𝑏) → ((((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))))
7467, 73syl5ibrcom 246 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7574expimpd 454 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
76753expa 1117 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7776rexlimdva 3211 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7877rexlimivv 3219 . . 3 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
791, 78sylbi 216 . 2 (𝐴 ∈ LinesEE → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
80793impib 1115 1 ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887  cfv 6427  (class class class)co 7268  cn 11961  𝔼cee 27244  Linecline2 34422  LinesEEclines2 34424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-ec 8488  df-map 8605  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-ico 13073  df-icc 13074  df-fz 13228  df-fzo 13371  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-sum 15386  df-ee 27247  df-btwn 27248  df-cgr 27249  df-ofs 34271  df-colinear 34327  df-ifs 34328  df-cgr3 34329  df-fs 34330  df-line2 34425  df-lines2 34427
This theorem is referenced by:  hilbert1.2  34443  lineintmo  34445
  Copyright terms: Public domain W3C validator