Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Visualization version   GIF version

Theorem linethru 36095
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))

Proof of Theorem linethru
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 36094 . . 3 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)))
2 simpll1 1212 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑛 ∈ ℕ)
3 simpll2 1213 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎 ∈ (𝔼‘𝑛))
4 simpll3 1214 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑏 ∈ (𝔼‘𝑛))
5 simplr 768 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎𝑏)
6 liness 36087 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
72, 3, 4, 5, 6syl13anc 1373 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
8 simprll 778 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑎Line𝑏))
97, 8sseldd 3966 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝔼‘𝑛))
10 simprlr 779 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑎Line𝑏))
117, 10sseldd 3966 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝔼‘𝑛))
12 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏))
1312adantl 481 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏))
14 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ)
15 simpll2 1213 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛))
16 simpll3 1214 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛))
17 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑏)
18 simprrl 780 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛))
19 simprlr 779 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃𝑎)
2019necomd 2986 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑃)
21 lineelsb2 36090 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2214, 15, 16, 17, 18, 20, 21syl132anc 1389 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2313, 22mpd 15 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃))
24 linecom 36092 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎))
2514, 15, 18, 20, 24syl13anc 1373 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎))
2623, 25eqtrd 2769 . . . . . . . . . . . . 13 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))
27 neeq2 2994 . . . . . . . . . . . . . . . . 17 (𝑄 = 𝑎 → (𝑃𝑄𝑃𝑎))
2827anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎)))
2928anbi1d 631 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))
3029anbi2d 630 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))))
31 oveq2 7422 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎))
3231eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎)))
3330, 32imbi12d 344 . . . . . . . . . . . . 13 (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))))
3426, 33mpbiri 258 . . . . . . . . . . . 12 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
35 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏))
36 simp2l 1199 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄))
3735, 36, 10syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝑎Line𝑏))
38 simp1l1 1266 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑛 ∈ ℕ)
39 simp1l2 1267 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎 ∈ (𝔼‘𝑛))
40 simp1l3 1268 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑏 ∈ (𝔼‘𝑛))
41 simp1r 1198 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑏)
42 simp2rr 1243 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝔼‘𝑛))
43 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑎)
4443necomd 2986 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑄)
45 lineelsb2 36090 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4638, 39, 40, 41, 42, 44, 45syl132anc 1389 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4737, 46mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄))
48 linecom 36092 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎))
4938, 39, 42, 44, 48syl13anc 1373 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎))
5047, 49eqtrd 2769 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎))
5136simplld 767 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑎Line𝑏))
5251, 50eleqtrd 2835 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑄Line𝑎))
53 simp2rl 1242 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝔼‘𝑛))
54 simp2lr 1241 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃𝑄)
5554necomd 2986 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑃)
56 lineelsb2 36090 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5738, 42, 39, 43, 53, 55, 56syl132anc 1389 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5852, 57mpd 15 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))
59 linecom 36092 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄))
6038, 42, 53, 55, 59syl13anc 1373 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄))
6150, 58, 603eqtrd 2773 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
62613expa 1118 . . . . . . . . . . . . 13 (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
6362expcom 413 . . . . . . . . . . . 12 (𝑄𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
6434, 63pm2.61ine 3014 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))
6564expr 456 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄)))
669, 11, 65mp2and 699 . . . . . . . . 9 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄))
6766ex 412 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))
68 eleq2 2822 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑃𝐴𝑃 ∈ (𝑎Line𝑏)))
69 eleq2 2822 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑄𝐴𝑄 ∈ (𝑎Line𝑏)))
7068, 69anbi12d 632 . . . . . . . . . 10 (𝐴 = (𝑎Line𝑏) → ((𝑃𝐴𝑄𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏))))
7170anbi1d 631 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)))
72 eqeq1 2738 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄)))
7371, 72imbi12d 344 . . . . . . . 8 (𝐴 = (𝑎Line𝑏) → ((((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))))
7467, 73syl5ibrcom 247 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7574expimpd 453 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
76753expa 1118 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7776rexlimdva 3142 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7877rexlimivv 3188 . . 3 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
791, 78sylbi 217 . 2 (𝐴 ∈ LinesEE → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
80793impib 1116 1 ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  wss 3933  cfv 6542  (class class class)co 7414  cn 12249  𝔼cee 28852  Linecline2 36076  LinesEEclines2 36078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-ec 8730  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-ee 28855  df-btwn 28856  df-cgr 28857  df-ofs 35925  df-colinear 35981  df-ifs 35982  df-cgr3 35983  df-fs 35984  df-line2 36079  df-lines2 36081
This theorem is referenced by:  hilbert1.2  36097  lineintmo  36099
  Copyright terms: Public domain W3C validator