Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Visualization version   GIF version

Theorem linethru 33618
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))

Proof of Theorem linethru
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 33617 . . 3 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)))
2 simpll1 1208 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑛 ∈ ℕ)
3 simpll2 1209 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎 ∈ (𝔼‘𝑛))
4 simpll3 1210 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑏 ∈ (𝔼‘𝑛))
5 simplr 767 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎𝑏)
6 liness 33610 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
72, 3, 4, 5, 6syl13anc 1368 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
8 simprll 777 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑎Line𝑏))
97, 8sseldd 3971 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝔼‘𝑛))
10 simprlr 778 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑎Line𝑏))
117, 10sseldd 3971 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝔼‘𝑛))
12 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏))
1312adantl 484 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏))
14 simpll1 1208 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ)
15 simpll2 1209 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛))
16 simpll3 1210 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛))
17 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑏)
18 simprrl 779 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛))
19 simprlr 778 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃𝑎)
2019necomd 3074 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑃)
21 lineelsb2 33613 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2214, 15, 16, 17, 18, 20, 21syl132anc 1384 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2313, 22mpd 15 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃))
24 linecom 33615 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎))
2514, 15, 18, 20, 24syl13anc 1368 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎))
2623, 25eqtrd 2859 . . . . . . . . . . . . 13 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))
27 neeq2 3082 . . . . . . . . . . . . . . . . 17 (𝑄 = 𝑎 → (𝑃𝑄𝑃𝑎))
2827anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎)))
2928anbi1d 631 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))
3029anbi2d 630 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))))
31 oveq2 7167 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎))
3231eqeq2d 2835 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎)))
3330, 32imbi12d 347 . . . . . . . . . . . . 13 (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))))
3426, 33mpbiri 260 . . . . . . . . . . . 12 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
35 simp1 1132 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏))
36 simp2l 1195 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄))
3735, 36, 10syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝑎Line𝑏))
38 simp1l1 1262 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑛 ∈ ℕ)
39 simp1l2 1263 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎 ∈ (𝔼‘𝑛))
40 simp1l3 1264 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑏 ∈ (𝔼‘𝑛))
41 simp1r 1194 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑏)
42 simp2rr 1239 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝔼‘𝑛))
43 simp3 1134 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑎)
4443necomd 3074 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑄)
45 lineelsb2 33613 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4638, 39, 40, 41, 42, 44, 45syl132anc 1384 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4737, 46mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄))
48 linecom 33615 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎))
4938, 39, 42, 44, 48syl13anc 1368 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎))
5047, 49eqtrd 2859 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎))
5136simplld 766 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑎Line𝑏))
5251, 50eleqtrd 2918 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑄Line𝑎))
53 simp2rl 1238 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝔼‘𝑛))
54 simp2lr 1237 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃𝑄)
5554necomd 3074 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑃)
56 lineelsb2 33613 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5738, 42, 39, 43, 53, 55, 56syl132anc 1384 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5852, 57mpd 15 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))
59 linecom 33615 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄))
6038, 42, 53, 55, 59syl13anc 1368 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄))
6150, 58, 603eqtrd 2863 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
62613expa 1114 . . . . . . . . . . . . 13 (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
6362expcom 416 . . . . . . . . . . . 12 (𝑄𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
6434, 63pm2.61ine 3103 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))
6564expr 459 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄)))
669, 11, 65mp2and 697 . . . . . . . . 9 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄))
6766ex 415 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))
68 eleq2 2904 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑃𝐴𝑃 ∈ (𝑎Line𝑏)))
69 eleq2 2904 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑄𝐴𝑄 ∈ (𝑎Line𝑏)))
7068, 69anbi12d 632 . . . . . . . . . 10 (𝐴 = (𝑎Line𝑏) → ((𝑃𝐴𝑄𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏))))
7170anbi1d 631 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)))
72 eqeq1 2828 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄)))
7371, 72imbi12d 347 . . . . . . . 8 (𝐴 = (𝑎Line𝑏) → ((((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))))
7467, 73syl5ibrcom 249 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7574expimpd 456 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
76753expa 1114 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7776rexlimdva 3287 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7877rexlimivv 3295 . . 3 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
791, 78sylbi 219 . 2 (𝐴 ∈ LinesEE → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
80793impib 1112 1 ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  wss 3939  cfv 6358  (class class class)co 7159  cn 11641  𝔼cee 26677  Linecline2 33599  LinesEEclines2 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-ec 8294  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-ee 26680  df-btwn 26681  df-cgr 26682  df-ofs 33448  df-colinear 33504  df-ifs 33505  df-cgr3 33506  df-fs 33507  df-line2 33602  df-lines2 33604
This theorem is referenced by:  hilbert1.2  33620  lineintmo  33622
  Copyright terms: Public domain W3C validator