| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8080 mapxpen 9056 lsmcv 21079 pmatcollpw2 22694 sltlpss 27854 btwnconn1lem4 36130 linethru 36193 hlrelat3 39457 cvrval3 39458 cvrval4N 39459 2atlt 39484 atbtwnex 39493 1cvratlt 39519 atcvrlln2 39564 atcvrlln 39565 2llnmat 39569 lvolnlelpln 39630 lnjatN 39825 lncmp 39828 cdlemd9 40251 dihord5b 41304 dihmeetALTN 41372 mapdrvallem2 41690 itschlc0xyqsol 48805 |
| Copyright terms: Public domain | W3C validator |