MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1266
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1191 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1132 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  mapxpen  8930  lsmcv  20403  pmatcollpw2  21927  sltlpss  34087  btwnconn1lem4  34392  linethru  34455  hlrelat3  37426  cvrval3  37427  cvrval4N  37428  2atlt  37453  atbtwnex  37462  1cvratlt  37488  atcvrlln2  37533  atcvrlln  37534  2llnmat  37538  lvolnlelpln  37599  lnjatN  37794  lncmp  37797  cdlemd9  38220  dihord5b  39273  dihmeetALTN  39341  mapdrvallem2  39659  itschlc0xyqsol  46113
  Copyright terms: Public domain W3C validator