| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8129 mapxpen 9107 lsmcv 21051 pmatcollpw2 22665 sltlpss 27819 btwnconn1lem4 36078 linethru 36141 hlrelat3 39406 cvrval3 39407 cvrval4N 39408 2atlt 39433 atbtwnex 39442 1cvratlt 39468 atcvrlln2 39513 atcvrlln 39514 2llnmat 39518 lvolnlelpln 39579 lnjatN 39774 lncmp 39777 cdlemd9 40200 dihord5b 41253 dihmeetALTN 41321 mapdrvallem2 41639 itschlc0xyqsol 48756 |
| Copyright terms: Public domain | W3C validator |