Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mapxpen 8879 lsmcv 20318 pmatcollpw2 21835 sltlpss 34014 btwnconn1lem4 34319 linethru 34382 hlrelat3 37353 cvrval3 37354 cvrval4N 37355 2atlt 37380 atbtwnex 37389 1cvratlt 37415 atcvrlln2 37460 atcvrlln 37461 2llnmat 37465 lvolnlelpln 37526 lnjatN 37721 lncmp 37724 cdlemd9 38147 dihord5b 39200 dihmeetALTN 39268 mapdrvallem2 39586 itschlc0xyqsol 46001 |
Copyright terms: Public domain | W3C validator |