MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1268
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8090  mapxpen  9067  lsmcv  21066  pmatcollpw2  22681  sltlpss  27840  btwnconn1lem4  36066  linethru  36129  hlrelat3  39394  cvrval3  39395  cvrval4N  39396  2atlt  39421  atbtwnex  39430  1cvratlt  39456  atcvrlln2  39501  atcvrlln  39502  2llnmat  39506  lvolnlelpln  39567  lnjatN  39762  lncmp  39765  cdlemd9  40188  dihord5b  41241  dihmeetALTN  41309  mapdrvallem2  41627  itschlc0xyqsol  48756
  Copyright terms: Public domain W3C validator