MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1268
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8088  mapxpen  9065  lsmcv  21082  pmatcollpw2  22696  sltlpss  27856  btwnconn1lem4  36157  linethru  36220  hlrelat3  39534  cvrval3  39535  cvrval4N  39536  2atlt  39561  atbtwnex  39570  1cvratlt  39596  atcvrlln2  39641  atcvrlln  39642  2llnmat  39646  lvolnlelpln  39707  lnjatN  39902  lncmp  39905  cdlemd9  40328  dihord5b  41381  dihmeetALTN  41449  mapdrvallem2  41767  itschlc0xyqsol  48895
  Copyright terms: Public domain W3C validator