| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8088 mapxpen 9065 lsmcv 21082 pmatcollpw2 22696 sltlpss 27856 btwnconn1lem4 36157 linethru 36220 hlrelat3 39534 cvrval3 39535 cvrval4N 39536 2atlt 39561 atbtwnex 39570 1cvratlt 39596 atcvrlln2 39641 atcvrlln 39642 2llnmat 39646 lvolnlelpln 39707 lnjatN 39902 lncmp 39905 cdlemd9 40328 dihord5b 41381 dihmeetALTN 41449 mapdrvallem2 41767 itschlc0xyqsol 48895 |
| Copyright terms: Public domain | W3C validator |