MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1268
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8149  mapxpen  9157  lsmcv  21102  pmatcollpw2  22716  sltlpss  27871  btwnconn1lem4  36108  linethru  36171  hlrelat3  39431  cvrval3  39432  cvrval4N  39433  2atlt  39458  atbtwnex  39467  1cvratlt  39493  atcvrlln2  39538  atcvrlln  39539  2llnmat  39543  lvolnlelpln  39604  lnjatN  39799  lncmp  39802  cdlemd9  40225  dihord5b  41278  dihmeetALTN  41346  mapdrvallem2  41664  itschlc0xyqsol  48747
  Copyright terms: Public domain W3C validator