Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mapxpen 8930 lsmcv 20403 pmatcollpw2 21927 sltlpss 34087 btwnconn1lem4 34392 linethru 34455 hlrelat3 37426 cvrval3 37427 cvrval4N 37428 2atlt 37453 atbtwnex 37462 1cvratlt 37488 atcvrlln2 37533 atcvrlln 37534 2llnmat 37538 lvolnlelpln 37599 lnjatN 37794 lncmp 37797 cdlemd9 38220 dihord5b 39273 dihmeetALTN 39341 mapdrvallem2 39659 itschlc0xyqsol 46113 |
Copyright terms: Public domain | W3C validator |