| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8090 mapxpen 9067 lsmcv 21066 pmatcollpw2 22681 sltlpss 27840 btwnconn1lem4 36066 linethru 36129 hlrelat3 39394 cvrval3 39395 cvrval4N 39396 2atlt 39421 atbtwnex 39430 1cvratlt 39456 atcvrlln2 39501 atcvrlln 39502 2llnmat 39506 lvolnlelpln 39567 lnjatN 39762 lncmp 39765 cdlemd9 40188 dihord5b 41241 dihmeetALTN 41309 mapdrvallem2 41627 itschlc0xyqsol 48756 |
| Copyright terms: Public domain | W3C validator |