![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp3 8191 mapxpen 9209 lsmcv 21166 pmatcollpw2 22805 sltlpss 27963 btwnconn1lem4 36054 linethru 36117 hlrelat3 39369 cvrval3 39370 cvrval4N 39371 2atlt 39396 atbtwnex 39405 1cvratlt 39431 atcvrlln2 39476 atcvrlln 39477 2llnmat 39481 lvolnlelpln 39542 lnjatN 39737 lncmp 39740 cdlemd9 40163 dihord5b 41216 dihmeetALTN 41284 mapdrvallem2 41602 itschlc0xyqsol 48501 |
Copyright terms: Public domain | W3C validator |