MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1268
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8132  mapxpen  9113  lsmcv  21058  pmatcollpw2  22672  sltlpss  27826  btwnconn1lem4  36085  linethru  36148  hlrelat3  39413  cvrval3  39414  cvrval4N  39415  2atlt  39440  atbtwnex  39449  1cvratlt  39475  atcvrlln2  39520  atcvrlln  39521  2llnmat  39525  lvolnlelpln  39586  lnjatN  39781  lncmp  39784  cdlemd9  40207  dihord5b  41260  dihmeetALTN  41328  mapdrvallem2  41646  itschlc0xyqsol  48760
  Copyright terms: Public domain W3C validator