| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8132 mapxpen 9113 lsmcv 21058 pmatcollpw2 22672 sltlpss 27826 btwnconn1lem4 36085 linethru 36148 hlrelat3 39413 cvrval3 39414 cvrval4N 39415 2atlt 39440 atbtwnex 39449 1cvratlt 39475 atcvrlln2 39520 atcvrlln 39521 2llnmat 39525 lvolnlelpln 39586 lnjatN 39781 lncmp 39784 cdlemd9 40207 dihord5b 41260 dihmeetALTN 41328 mapdrvallem2 41646 itschlc0xyqsol 48760 |
| Copyright terms: Public domain | W3C validator |