MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1268
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8129  mapxpen  9107  lsmcv  21051  pmatcollpw2  22665  sltlpss  27819  btwnconn1lem4  36078  linethru  36141  hlrelat3  39406  cvrval3  39407  cvrval4N  39408  2atlt  39433  atbtwnex  39442  1cvratlt  39468  atcvrlln2  39513  atcvrlln  39514  2llnmat  39518  lvolnlelpln  39579  lnjatN  39774  lncmp  39777  cdlemd9  40200  dihord5b  41253  dihmeetALTN  41321  mapdrvallem2  41639  itschlc0xyqsol  48756
  Copyright terms: Public domain W3C validator