| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8149 mapxpen 9157 lsmcv 21102 pmatcollpw2 22716 sltlpss 27871 btwnconn1lem4 36108 linethru 36171 hlrelat3 39431 cvrval3 39432 cvrval4N 39433 2atlt 39458 atbtwnex 39467 1cvratlt 39493 atcvrlln2 39538 atcvrlln 39539 2llnmat 39543 lvolnlelpln 39604 lnjatN 39799 lncmp 39802 cdlemd9 40225 dihord5b 41278 dihmeetALTN 41346 mapdrvallem2 41664 itschlc0xyqsol 48747 |
| Copyright terms: Public domain | W3C validator |