![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: poxp3 8174 mapxpen 9182 lsmcv 21161 pmatcollpw2 22800 sltlpss 27960 btwnconn1lem4 36072 linethru 36135 hlrelat3 39395 cvrval3 39396 cvrval4N 39397 2atlt 39422 atbtwnex 39431 1cvratlt 39457 atcvrlln2 39502 atcvrlln 39503 2llnmat 39507 lvolnlelpln 39568 lnjatN 39763 lncmp 39766 cdlemd9 40189 dihord5b 41242 dihmeetALTN 41310 mapdrvallem2 41628 itschlc0xyqsol 48617 |
Copyright terms: Public domain | W3C validator |