Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Visualization version   GIF version

Theorem mapdrvallem2 41690
Description: Lemma for mapdrval 41692. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h 𝐻 = (LHyp‘𝐾)
mapdrval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdrval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdrval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdrval.s 𝑆 = (LSubSp‘𝑈)
mapdrval.f 𝐹 = (LFnl‘𝑈)
mapdrval.l 𝐿 = (LKer‘𝑈)
mapdrval.d 𝐷 = (LDual‘𝑈)
mapdrval.t 𝑇 = (LSubSp‘𝐷)
mapdrval.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdrval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdrval.r (𝜑𝑅𝑇)
mapdrval.e (𝜑𝑅𝐶)
mapdrval.q 𝑄 = 𝑅 (𝑂‘(𝐿))
mapdrval.v 𝑉 = (Base‘𝑈)
mapdrvallem2.a 𝐴 = (LSAtoms‘𝑈)
mapdrvallem2.n 𝑁 = (LSpan‘𝑈)
mapdrvallem2.z 0 = (0g𝑈)
mapdrvallem2.y 𝑌 = (0g𝐷)
Assertion
Ref Expression
mapdrvallem2 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Distinct variable groups:   𝐶,𝑓   𝑓,𝑔,𝐹   𝑓,𝐾   𝑔,,𝐿   𝑔,𝑂,   𝑄,𝑓,   𝑅,𝑓,   𝑈,𝑔   𝑓,𝑊   𝜑,𝑓   𝐶,   ,𝑁   𝑄,   𝑈,   ,𝑉   ,𝑌   0 ,   𝜑,
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑓,𝑔,)   𝐶(𝑔)   𝐷(𝑓,𝑔,)   𝑄(𝑔)   𝑅(𝑔)   𝑆(𝑓,𝑔,)   𝑇(𝑓,𝑔,)   𝑈(𝑓)   𝐹()   𝐻(𝑓,𝑔,)   𝐾(𝑔,)   𝐿(𝑓)   𝑀(𝑓,𝑔,)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑉(𝑓,𝑔)   𝑊(𝑔,)   𝑌(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem mapdrvallem2
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . 3 (𝑓 = 𝑌 → (𝑓𝑅𝑌𝑅))
2 mapdrval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdrval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdrval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdrval.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdrvallem2.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 mapdrvallem2.z . . . . 5 0 = (0g𝑈)
8 mapdrval.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 mapdrval.l . . . . 5 𝐿 = (LKer‘𝑈)
10 mapdrval.d . . . . 5 𝐷 = (LDual‘𝑈)
11 mapdrvallem2.y . . . . 5 𝑌 = (0g𝐷)
12 mapdrval.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
13 mapdrval.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1133 . . . . . 6 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1193 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑌)
18 eldifsn 4738 . . . . . 6 (𝑓 ∈ (𝐶 ∖ {𝑌}) ↔ (𝑓𝐶𝑓𝑌))
1916, 17, 18sylanbrc 583 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓 ∈ (𝐶 ∖ {𝑌}))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 41549 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
21 simp1l3 1269 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ⊆ 𝑄)
22 eqimss2 3994 . . . . . . . . . . . . 13 ((𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
23223ad2ant3 1135 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
24 mapdrval.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑈)
252, 4, 13dvhlmod 41155 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ LMod)
26253ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LMod)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LMod)
28273ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LMod)
29153ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3012lcfl1lem 41536 . . . . . . . . . . . . . . . . . . 19 (𝑓𝐶 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
3130simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑓𝐶𝑓𝐹)
32313ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝐹)
3332adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐹)
34333ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐹)
355, 8, 9, 28, 34lkrssv 39141 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐿𝑓) ⊆ 𝑉)
362, 4, 5, 24, 3dochlss 41399 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑓) ⊆ 𝑉) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
3729, 35, 36syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
38 eldifi 4081 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
39383ad2ant2 1134 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑉)
405, 24, 6, 28, 37, 39ellspsn5b 20929 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑥 ∈ (𝑂‘(𝐿𝑓)) ↔ (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓))))
4123, 40mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 ∈ (𝑂‘(𝐿𝑓)))
4221, 41sseldd 3935 . . . . . . . . . 10 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑄)
43 mapdrval.q . . . . . . . . . 10 𝑄 = 𝑅 (𝑂‘(𝐿))
4442, 43eleqtrdi 2841 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 𝑅 (𝑂‘(𝐿)))
45 eliun 4945 . . . . . . . . 9 (𝑥 𝑅 (𝑂‘(𝐿)) ↔ ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
4644, 45sylib 218 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
47 eqid 2731 . . . . . . . . . . 11 (Scalar‘𝑈) = (Scalar‘𝑈)
48 eqid 2731 . . . . . . . . . . 11 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
49 eqid 2731 . . . . . . . . . . 11 ( ·𝑠𝐷) = ( ·𝑠𝐷)
502, 4, 13dvhlvec 41154 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LVec)
51503ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LVec)
5251adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LVec)
53523ad2ant1 1133 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LVec)
5453ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LVec)
55 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅)
56 simp1l1 1267 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝜑)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝜑)
58 mapdrval.e . . . . . . . . . . . . . . . 16 (𝜑𝑅𝐶)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅𝐶)
6059sseld 3933 . . . . . . . . . . . . . 14 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐶))
6112lcfl1lem 41536 . . . . . . . . . . . . . . 15 (𝐶 ↔ (𝐹 ∧ (𝑂‘(𝑂‘(𝐿))) = (𝐿)))
6261simplbi 497 . . . . . . . . . . . . . 14 (𝐶𝐹)
6360, 62syl6 35 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐹))
6455, 63mpd 15 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐹)
6564adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐹)
6634ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐹)
67 simpll3 1215 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
6828ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LMod)
6929ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
705, 8, 9, 68, 65lkrssv 39141 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ⊆ 𝑉)
712, 4, 5, 24, 3dochlss 41399 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ 𝑉) → (𝑂‘(𝐿)) ∈ 𝑆)
7269, 70, 71syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) ∈ 𝑆)
73 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑂‘(𝐿)))
7424, 6, 68, 72, 73ellspsn5 20930 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)))
75 mapdrvallem2.a . . . . . . . . . . . . . . 15 𝐴 = (LSAtoms‘𝑈)
76 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
775, 6, 7, 75, 68, 76lsatlspsn 39038 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ∈ 𝐴)
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 41502 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) ∈ 𝐴 ∨ (𝑂‘(𝐿)) = { 0 }))
797, 75, 54, 77, 78lsatcmp2 39049 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)) ↔ (𝑁‘{𝑥}) = (𝑂‘(𝐿))))
8074, 79mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) = (𝑂‘(𝐿)))
8167, 80eqtr2d 2767 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)))
82 eqid 2731 . . . . . . . . . . . . 13 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
8356, 58syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑅𝐶)
8483sselda 3934 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐶)
8584adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐶)
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 41541 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐶 ↔ (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
8785, 86mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊))
88 simp1l2 1268 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐶)
8988ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐶)
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 41541 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑓𝐶 ↔ (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
9189, 90mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊))
922, 82, 3, 69, 87, 91doch11 41418 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)) ↔ (𝐿) = (𝐿𝑓)))
9381, 92mpbid 232 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) = (𝐿𝑓))
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 39210 . . . . . . . . . 10 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
9594ex 412 . . . . . . . . 9 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9695reximdva 3145 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑅 𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9746, 96mpd 15 . . . . . . 7 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
98 eleq1 2819 . . . . . . . . . 10 (𝑓 = (𝑟( ·𝑠𝐷)) → (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
9998reximi 3070 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
10099reximi 3070 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
101 rexcom 3261 . . . . . . . . 9 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
102 df-rex 3057 . . . . . . . . . 10 (∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
103102rexbii 3079 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
104101, 103bitri 275 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
105100, 104sylib 218 . . . . . . 7 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
10697, 105syl 17 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
107 mapdrval.t . . . . . . . . . . . 12 𝑇 = (LSubSp‘𝐷)
10827ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑈 ∈ LMod)
109 mapdrval.r . . . . . . . . . . . . . . 15 (𝜑𝑅𝑇)
1101093ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑅𝑇)
111110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑅𝑇)
112111ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅𝑇)
113 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑟 ∈ (Base‘(Scalar‘𝑈)))
114 simprl 770 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅)
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 39203 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → (𝑟( ·𝑠𝐷)) ∈ 𝑅)
116 biimpr 220 . . . . . . . . . . . 12 ((𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
117116ad2antll 729 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
118115, 117mpd 15 . . . . . . . . . 10 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑓𝑅)
119118ex 412 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → ((𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
120119exlimdv 1934 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → (∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
121120rexlimdva 3133 . . . . . . 7 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
1221213ad2ant1 1133 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
123106, 122mpd 15 . . . . 5 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝑅)
124123rexlimdv3a 3137 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → 𝑓𝑅))
12520, 124mpd 15 . . 3 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑅)
12610, 25lduallmod 39198 . . . . 5 (𝜑𝐷 ∈ LMod)
1271263ad2ant1 1133 . . . 4 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝐷 ∈ LMod)
12811, 107lss0cl 20881 . . . 4 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → 𝑌𝑅)
129127, 110, 128syl2anc 584 . . 3 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑌𝑅)
1301, 125, 129pm2.61ne 3013 . 2 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝑅)
131130rabssdv 4025 1 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  cdif 3899  wss 3902  {csn 4576   ciun 4941  ran crn 5617  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LModclmod 20794  LSubSpclss 20865  LSpanclspn 20905  LVecclvec 21037  LSAtomsclsa 39019  LFnlclfn 39102  LKerclk 39130  LDualcld 39168  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  DIsoHcdih 41273  ocHcoch 41392  mapdcmpd 41669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440
This theorem is referenced by:  mapdrvallem3  41691
  Copyright terms: Public domain W3C validator