Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Visualization version   GIF version

Theorem mapdrvallem2 41627
Description: Lemma for mapdrval 41629. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h 𝐻 = (LHyp‘𝐾)
mapdrval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdrval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdrval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdrval.s 𝑆 = (LSubSp‘𝑈)
mapdrval.f 𝐹 = (LFnl‘𝑈)
mapdrval.l 𝐿 = (LKer‘𝑈)
mapdrval.d 𝐷 = (LDual‘𝑈)
mapdrval.t 𝑇 = (LSubSp‘𝐷)
mapdrval.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdrval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdrval.r (𝜑𝑅𝑇)
mapdrval.e (𝜑𝑅𝐶)
mapdrval.q 𝑄 = 𝑅 (𝑂‘(𝐿))
mapdrval.v 𝑉 = (Base‘𝑈)
mapdrvallem2.a 𝐴 = (LSAtoms‘𝑈)
mapdrvallem2.n 𝑁 = (LSpan‘𝑈)
mapdrvallem2.z 0 = (0g𝑈)
mapdrvallem2.y 𝑌 = (0g𝐷)
Assertion
Ref Expression
mapdrvallem2 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Distinct variable groups:   𝐶,𝑓   𝑓,𝑔,𝐹   𝑓,𝐾   𝑔,,𝐿   𝑔,𝑂,   𝑄,𝑓,   𝑅,𝑓,   𝑈,𝑔   𝑓,𝑊   𝜑,𝑓   𝐶,   ,𝑁   𝑄,   𝑈,   ,𝑉   ,𝑌   0 ,   𝜑,
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑓,𝑔,)   𝐶(𝑔)   𝐷(𝑓,𝑔,)   𝑄(𝑔)   𝑅(𝑔)   𝑆(𝑓,𝑔,)   𝑇(𝑓,𝑔,)   𝑈(𝑓)   𝐹()   𝐻(𝑓,𝑔,)   𝐾(𝑔,)   𝐿(𝑓)   𝑀(𝑓,𝑔,)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑉(𝑓,𝑔)   𝑊(𝑔,)   𝑌(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem mapdrvallem2
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . 3 (𝑓 = 𝑌 → (𝑓𝑅𝑌𝑅))
2 mapdrval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdrval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdrval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdrval.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdrvallem2.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 mapdrvallem2.z . . . . 5 0 = (0g𝑈)
8 mapdrval.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 mapdrval.l . . . . 5 𝐿 = (LKer‘𝑈)
10 mapdrval.d . . . . 5 𝐷 = (LDual‘𝑈)
11 mapdrvallem2.y . . . . 5 𝑌 = (0g𝐷)
12 mapdrval.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
13 mapdrval.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1132 . . . . . 6 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1191 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑌)
18 eldifsn 4790 . . . . . 6 (𝑓 ∈ (𝐶 ∖ {𝑌}) ↔ (𝑓𝐶𝑓𝑌))
1916, 17, 18sylanbrc 583 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓 ∈ (𝐶 ∖ {𝑌}))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 41486 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
21 simp1l3 1267 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ⊆ 𝑄)
22 eqimss2 4054 . . . . . . . . . . . . 13 ((𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
23223ad2ant3 1134 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
24 mapdrval.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑈)
252, 4, 13dvhlmod 41092 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ LMod)
26253ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LMod)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LMod)
28273ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LMod)
29153ad2ant1 1132 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3012lcfl1lem 41473 . . . . . . . . . . . . . . . . . . 19 (𝑓𝐶 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
3130simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑓𝐶𝑓𝐹)
32313ad2ant2 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝐹)
3332adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐹)
34333ad2ant1 1132 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐹)
355, 8, 9, 28, 34lkrssv 39077 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐿𝑓) ⊆ 𝑉)
362, 4, 5, 24, 3dochlss 41336 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑓) ⊆ 𝑉) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
3729, 35, 36syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
38 eldifi 4140 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
39383ad2ant2 1133 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑉)
405, 24, 6, 28, 37, 39ellspsn5b 21010 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑥 ∈ (𝑂‘(𝐿𝑓)) ↔ (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓))))
4123, 40mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 ∈ (𝑂‘(𝐿𝑓)))
4221, 41sseldd 3995 . . . . . . . . . 10 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑄)
43 mapdrval.q . . . . . . . . . 10 𝑄 = 𝑅 (𝑂‘(𝐿))
4442, 43eleqtrdi 2848 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 𝑅 (𝑂‘(𝐿)))
45 eliun 4999 . . . . . . . . 9 (𝑥 𝑅 (𝑂‘(𝐿)) ↔ ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
4644, 45sylib 218 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
47 eqid 2734 . . . . . . . . . . 11 (Scalar‘𝑈) = (Scalar‘𝑈)
48 eqid 2734 . . . . . . . . . . 11 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
49 eqid 2734 . . . . . . . . . . 11 ( ·𝑠𝐷) = ( ·𝑠𝐷)
502, 4, 13dvhlvec 41091 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LVec)
51503ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LVec)
5251adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LVec)
53523ad2ant1 1132 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LVec)
5453ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LVec)
55 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅)
56 simp1l1 1265 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝜑)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝜑)
58 mapdrval.e . . . . . . . . . . . . . . . 16 (𝜑𝑅𝐶)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅𝐶)
6059sseld 3993 . . . . . . . . . . . . . 14 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐶))
6112lcfl1lem 41473 . . . . . . . . . . . . . . 15 (𝐶 ↔ (𝐹 ∧ (𝑂‘(𝑂‘(𝐿))) = (𝐿)))
6261simplbi 497 . . . . . . . . . . . . . 14 (𝐶𝐹)
6360, 62syl6 35 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐹))
6455, 63mpd 15 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐹)
6564adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐹)
6634ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐹)
67 simpll3 1213 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
6828ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LMod)
6929ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
705, 8, 9, 68, 65lkrssv 39077 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ⊆ 𝑉)
712, 4, 5, 24, 3dochlss 41336 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ 𝑉) → (𝑂‘(𝐿)) ∈ 𝑆)
7269, 70, 71syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) ∈ 𝑆)
73 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑂‘(𝐿)))
7424, 6, 68, 72, 73ellspsn5 21011 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)))
75 mapdrvallem2.a . . . . . . . . . . . . . . 15 𝐴 = (LSAtoms‘𝑈)
76 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
775, 6, 7, 75, 68, 76lsatlspsn 38974 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ∈ 𝐴)
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 41439 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) ∈ 𝐴 ∨ (𝑂‘(𝐿)) = { 0 }))
797, 75, 54, 77, 78lsatcmp2 38985 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)) ↔ (𝑁‘{𝑥}) = (𝑂‘(𝐿))))
8074, 79mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) = (𝑂‘(𝐿)))
8167, 80eqtr2d 2775 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)))
82 eqid 2734 . . . . . . . . . . . . 13 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
8356, 58syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑅𝐶)
8483sselda 3994 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐶)
8584adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐶)
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 41478 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐶 ↔ (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
8785, 86mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊))
88 simp1l2 1266 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐶)
8988ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐶)
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 41478 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑓𝐶 ↔ (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
9189, 90mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊))
922, 82, 3, 69, 87, 91doch11 41355 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)) ↔ (𝐿) = (𝐿𝑓)))
9381, 92mpbid 232 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) = (𝐿𝑓))
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 39146 . . . . . . . . . 10 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
9594ex 412 . . . . . . . . 9 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9695reximdva 3165 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑅 𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9746, 96mpd 15 . . . . . . 7 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
98 eleq1 2826 . . . . . . . . . 10 (𝑓 = (𝑟( ·𝑠𝐷)) → (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
9998reximi 3081 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
10099reximi 3081 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
101 rexcom 3287 . . . . . . . . 9 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
102 df-rex 3068 . . . . . . . . . 10 (∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
103102rexbii 3091 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
104101, 103bitri 275 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
105100, 104sylib 218 . . . . . . 7 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
10697, 105syl 17 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
107 mapdrval.t . . . . . . . . . . . 12 𝑇 = (LSubSp‘𝐷)
10827ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑈 ∈ LMod)
109 mapdrval.r . . . . . . . . . . . . . . 15 (𝜑𝑅𝑇)
1101093ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑅𝑇)
111110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑅𝑇)
112111ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅𝑇)
113 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑟 ∈ (Base‘(Scalar‘𝑈)))
114 simprl 771 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅)
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 39139 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → (𝑟( ·𝑠𝐷)) ∈ 𝑅)
116 biimpr 220 . . . . . . . . . . . 12 ((𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
117116ad2antll 729 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
118115, 117mpd 15 . . . . . . . . . 10 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑓𝑅)
119118ex 412 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → ((𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
120119exlimdv 1930 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → (∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
121120rexlimdva 3152 . . . . . . 7 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
1221213ad2ant1 1132 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
123106, 122mpd 15 . . . . 5 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝑅)
124123rexlimdv3a 3156 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → 𝑓𝑅))
12520, 124mpd 15 . . 3 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑅)
12610, 25lduallmod 39134 . . . . 5 (𝜑𝐷 ∈ LMod)
1271263ad2ant1 1132 . . . 4 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝐷 ∈ LMod)
12811, 107lss0cl 20962 . . . 4 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → 𝑌𝑅)
129127, 110, 128syl2anc 584 . . 3 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑌𝑅)
1301, 125, 129pm2.61ne 3024 . 2 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝑅)
131130rabssdv 4084 1 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067  {crab 3432  cdif 3959  wss 3962  {csn 4630   ciun 4995  ran crn 5689  cfv 6562  (class class class)co 7430  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  LModclmod 20874  LSubSpclss 20946  LSpanclspn 20986  LVecclvec 21118  LSAtomsclsa 38955  LFnlclfn 39038  LKerclk 39066  LDualcld 39104  HLchlt 39331  LHypclh 39966  DVecHcdvh 41060  DIsoHcdih 41210  ocHcoch 41329  mapdcmpd 41606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-undef 8296  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17487  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cntz 19347  df-lsm 19668  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-drng 20747  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lvec 21119  df-lsatoms 38957  df-lshyp 38958  df-lfl 39039  df-lkr 39067  df-ldual 39105  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tgrp 40725  df-tendo 40737  df-edring 40739  df-dveca 40985  df-disoa 41011  df-dvech 41061  df-dib 41121  df-dic 41155  df-dih 41211  df-doch 41330  df-djh 41377
This theorem is referenced by:  mapdrvallem3  41628
  Copyright terms: Public domain W3C validator