Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Visualization version   GIF version

Theorem mapdrvallem2 41767
Description: Lemma for mapdrval 41769. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h 𝐻 = (LHyp‘𝐾)
mapdrval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdrval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdrval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdrval.s 𝑆 = (LSubSp‘𝑈)
mapdrval.f 𝐹 = (LFnl‘𝑈)
mapdrval.l 𝐿 = (LKer‘𝑈)
mapdrval.d 𝐷 = (LDual‘𝑈)
mapdrval.t 𝑇 = (LSubSp‘𝐷)
mapdrval.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdrval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdrval.r (𝜑𝑅𝑇)
mapdrval.e (𝜑𝑅𝐶)
mapdrval.q 𝑄 = 𝑅 (𝑂‘(𝐿))
mapdrval.v 𝑉 = (Base‘𝑈)
mapdrvallem2.a 𝐴 = (LSAtoms‘𝑈)
mapdrvallem2.n 𝑁 = (LSpan‘𝑈)
mapdrvallem2.z 0 = (0g𝑈)
mapdrvallem2.y 𝑌 = (0g𝐷)
Assertion
Ref Expression
mapdrvallem2 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Distinct variable groups:   𝐶,𝑓   𝑓,𝑔,𝐹   𝑓,𝐾   𝑔,,𝐿   𝑔,𝑂,   𝑄,𝑓,   𝑅,𝑓,   𝑈,𝑔   𝑓,𝑊   𝜑,𝑓   𝐶,   ,𝑁   𝑄,   𝑈,   ,𝑉   ,𝑌   0 ,   𝜑,
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑓,𝑔,)   𝐶(𝑔)   𝐷(𝑓,𝑔,)   𝑄(𝑔)   𝑅(𝑔)   𝑆(𝑓,𝑔,)   𝑇(𝑓,𝑔,)   𝑈(𝑓)   𝐹()   𝐻(𝑓,𝑔,)   𝐾(𝑔,)   𝐿(𝑓)   𝑀(𝑓,𝑔,)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑉(𝑓,𝑔)   𝑊(𝑔,)   𝑌(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem mapdrvallem2
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . 3 (𝑓 = 𝑌 → (𝑓𝑅𝑌𝑅))
2 mapdrval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdrval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdrval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdrval.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdrvallem2.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 mapdrvallem2.z . . . . 5 0 = (0g𝑈)
8 mapdrval.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 mapdrval.l . . . . 5 𝐿 = (LKer‘𝑈)
10 mapdrval.d . . . . 5 𝐷 = (LDual‘𝑈)
11 mapdrvallem2.y . . . . 5 𝑌 = (0g𝐷)
12 mapdrval.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
13 mapdrval.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1133 . . . . . 6 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1193 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑌)
18 eldifsn 4739 . . . . . 6 (𝑓 ∈ (𝐶 ∖ {𝑌}) ↔ (𝑓𝐶𝑓𝑌))
1916, 17, 18sylanbrc 583 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓 ∈ (𝐶 ∖ {𝑌}))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 41626 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
21 simp1l3 1269 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ⊆ 𝑄)
22 eqimss2 3990 . . . . . . . . . . . . 13 ((𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
23223ad2ant3 1135 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
24 mapdrval.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑈)
252, 4, 13dvhlmod 41232 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ LMod)
26253ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LMod)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LMod)
28273ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LMod)
29153ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3012lcfl1lem 41613 . . . . . . . . . . . . . . . . . . 19 (𝑓𝐶 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
3130simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑓𝐶𝑓𝐹)
32313ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝐹)
3332adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐹)
34333ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐹)
355, 8, 9, 28, 34lkrssv 39218 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐿𝑓) ⊆ 𝑉)
362, 4, 5, 24, 3dochlss 41476 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑓) ⊆ 𝑉) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
3729, 35, 36syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
38 eldifi 4080 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
39383ad2ant2 1134 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑉)
405, 24, 6, 28, 37, 39ellspsn5b 20932 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑥 ∈ (𝑂‘(𝐿𝑓)) ↔ (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓))))
4123, 40mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 ∈ (𝑂‘(𝐿𝑓)))
4221, 41sseldd 3931 . . . . . . . . . 10 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑄)
43 mapdrval.q . . . . . . . . . 10 𝑄 = 𝑅 (𝑂‘(𝐿))
4442, 43eleqtrdi 2843 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 𝑅 (𝑂‘(𝐿)))
45 eliun 4947 . . . . . . . . 9 (𝑥 𝑅 (𝑂‘(𝐿)) ↔ ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
4644, 45sylib 218 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
47 eqid 2733 . . . . . . . . . . 11 (Scalar‘𝑈) = (Scalar‘𝑈)
48 eqid 2733 . . . . . . . . . . 11 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
49 eqid 2733 . . . . . . . . . . 11 ( ·𝑠𝐷) = ( ·𝑠𝐷)
502, 4, 13dvhlvec 41231 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LVec)
51503ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LVec)
5251adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LVec)
53523ad2ant1 1133 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LVec)
5453ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LVec)
55 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅)
56 simp1l1 1267 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝜑)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝜑)
58 mapdrval.e . . . . . . . . . . . . . . . 16 (𝜑𝑅𝐶)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅𝐶)
6059sseld 3929 . . . . . . . . . . . . . 14 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐶))
6112lcfl1lem 41613 . . . . . . . . . . . . . . 15 (𝐶 ↔ (𝐹 ∧ (𝑂‘(𝑂‘(𝐿))) = (𝐿)))
6261simplbi 497 . . . . . . . . . . . . . 14 (𝐶𝐹)
6360, 62syl6 35 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐹))
6455, 63mpd 15 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐹)
6564adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐹)
6634ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐹)
67 simpll3 1215 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
6828ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LMod)
6929ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
705, 8, 9, 68, 65lkrssv 39218 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ⊆ 𝑉)
712, 4, 5, 24, 3dochlss 41476 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ 𝑉) → (𝑂‘(𝐿)) ∈ 𝑆)
7269, 70, 71syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) ∈ 𝑆)
73 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑂‘(𝐿)))
7424, 6, 68, 72, 73ellspsn5 20933 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)))
75 mapdrvallem2.a . . . . . . . . . . . . . . 15 𝐴 = (LSAtoms‘𝑈)
76 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
775, 6, 7, 75, 68, 76lsatlspsn 39115 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ∈ 𝐴)
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 41579 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) ∈ 𝐴 ∨ (𝑂‘(𝐿)) = { 0 }))
797, 75, 54, 77, 78lsatcmp2 39126 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)) ↔ (𝑁‘{𝑥}) = (𝑂‘(𝐿))))
8074, 79mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) = (𝑂‘(𝐿)))
8167, 80eqtr2d 2769 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)))
82 eqid 2733 . . . . . . . . . . . . 13 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
8356, 58syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑅𝐶)
8483sselda 3930 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐶)
8584adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐶)
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 41618 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐶 ↔ (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
8785, 86mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊))
88 simp1l2 1268 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐶)
8988ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐶)
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 41618 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑓𝐶 ↔ (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
9189, 90mpbid 232 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊))
922, 82, 3, 69, 87, 91doch11 41495 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)) ↔ (𝐿) = (𝐿𝑓)))
9381, 92mpbid 232 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) = (𝐿𝑓))
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 39287 . . . . . . . . . 10 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
9594ex 412 . . . . . . . . 9 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9695reximdva 3146 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑅 𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9746, 96mpd 15 . . . . . . 7 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
98 eleq1 2821 . . . . . . . . . 10 (𝑓 = (𝑟( ·𝑠𝐷)) → (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
9998reximi 3071 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
10099reximi 3071 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
101 rexcom 3262 . . . . . . . . 9 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
102 df-rex 3058 . . . . . . . . . 10 (∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
103102rexbii 3080 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
104101, 103bitri 275 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
105100, 104sylib 218 . . . . . . 7 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
10697, 105syl 17 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
107 mapdrval.t . . . . . . . . . . . 12 𝑇 = (LSubSp‘𝐷)
10827ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑈 ∈ LMod)
109 mapdrval.r . . . . . . . . . . . . . . 15 (𝜑𝑅𝑇)
1101093ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑅𝑇)
111110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑅𝑇)
112111ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅𝑇)
113 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑟 ∈ (Base‘(Scalar‘𝑈)))
114 simprl 770 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅)
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 39280 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → (𝑟( ·𝑠𝐷)) ∈ 𝑅)
116 biimpr 220 . . . . . . . . . . . 12 ((𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
117116ad2antll 729 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
118115, 117mpd 15 . . . . . . . . . 10 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑓𝑅)
119118ex 412 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → ((𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
120119exlimdv 1934 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → (∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
121120rexlimdva 3134 . . . . . . 7 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
1221213ad2ant1 1133 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
123106, 122mpd 15 . . . . 5 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝑅)
124123rexlimdv3a 3138 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → 𝑓𝑅))
12520, 124mpd 15 . . 3 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑅)
12610, 25lduallmod 39275 . . . . 5 (𝜑𝐷 ∈ LMod)
1271263ad2ant1 1133 . . . 4 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝐷 ∈ LMod)
12811, 107lss0cl 20884 . . . 4 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → 𝑌𝑅)
129127, 110, 128syl2anc 584 . . 3 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑌𝑅)
1301, 125, 129pm2.61ne 3014 . 2 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝑅)
131130rabssdv 4023 1 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  {crab 3396  cdif 3895  wss 3898  {csn 4577   ciun 4943  ran crn 5622  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347  LModclmod 20797  LSubSpclss 20868  LSpanclspn 20908  LVecclvec 21040  LSAtomsclsa 39096  LFnlclfn 39179  LKerclk 39207  LDualcld 39245  HLchlt 39472  LHypclh 40106  DVecHcdvh 41200  DIsoHcdih 41350  ocHcoch 41469  mapdcmpd 41746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-riotaBAD 39075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-undef 8211  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-0g 17349  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-p1 18334  df-lat 18342  df-clat 18409  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19040  df-cntz 19233  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-drng 20650  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lvec 21041  df-lsatoms 39098  df-lshyp 39099  df-lfl 39180  df-lkr 39208  df-ldual 39246  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-llines 39620  df-lplanes 39621  df-lvols 39622  df-lines 39623  df-psubsp 39625  df-pmap 39626  df-padd 39918  df-lhyp 40110  df-laut 40111  df-ldil 40226  df-ltrn 40227  df-trl 40281  df-tgrp 40865  df-tendo 40877  df-edring 40879  df-dveca 41125  df-disoa 41151  df-dvech 41201  df-dib 41261  df-dic 41295  df-dih 41351  df-doch 41470  df-djh 41517
This theorem is referenced by:  mapdrvallem3  41768
  Copyright terms: Public domain W3C validator