Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Visualization version   GIF version

Theorem mapdrvallem2 39282
Description: Lemma for mapdrval 39284. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h 𝐻 = (LHyp‘𝐾)
mapdrval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdrval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdrval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdrval.s 𝑆 = (LSubSp‘𝑈)
mapdrval.f 𝐹 = (LFnl‘𝑈)
mapdrval.l 𝐿 = (LKer‘𝑈)
mapdrval.d 𝐷 = (LDual‘𝑈)
mapdrval.t 𝑇 = (LSubSp‘𝐷)
mapdrval.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdrval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdrval.r (𝜑𝑅𝑇)
mapdrval.e (𝜑𝑅𝐶)
mapdrval.q 𝑄 = 𝑅 (𝑂‘(𝐿))
mapdrval.v 𝑉 = (Base‘𝑈)
mapdrvallem2.a 𝐴 = (LSAtoms‘𝑈)
mapdrvallem2.n 𝑁 = (LSpan‘𝑈)
mapdrvallem2.z 0 = (0g𝑈)
mapdrvallem2.y 𝑌 = (0g𝐷)
Assertion
Ref Expression
mapdrvallem2 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Distinct variable groups:   𝐶,𝑓   𝑓,𝑔,𝐹   𝑓,𝐾   𝑔,,𝐿   𝑔,𝑂,   𝑄,𝑓,   𝑅,𝑓,   𝑈,𝑔   𝑓,𝑊   𝜑,𝑓   𝐶,   ,𝑁   𝑄,   𝑈,   ,𝑉   ,𝑌   0 ,   𝜑,
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑓,𝑔,)   𝐶(𝑔)   𝐷(𝑓,𝑔,)   𝑄(𝑔)   𝑅(𝑔)   𝑆(𝑓,𝑔,)   𝑇(𝑓,𝑔,)   𝑈(𝑓)   𝐹()   𝐻(𝑓,𝑔,)   𝐾(𝑔,)   𝐿(𝑓)   𝑀(𝑓,𝑔,)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑉(𝑓,𝑔)   𝑊(𝑔,)   𝑌(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem mapdrvallem2
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2820 . . 3 (𝑓 = 𝑌 → (𝑓𝑅𝑌𝑅))
2 mapdrval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdrval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdrval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdrval.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdrvallem2.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 mapdrvallem2.z . . . . 5 0 = (0g𝑈)
8 mapdrval.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 mapdrval.l . . . . 5 𝐿 = (LKer‘𝑈)
10 mapdrval.d . . . . 5 𝐷 = (LDual‘𝑈)
11 mapdrvallem2.y . . . . 5 𝑌 = (0g𝐷)
12 mapdrval.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
13 mapdrval.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1134 . . . . . 6 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 484 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1193 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐶)
17 simpr 488 . . . . . 6 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑌)
18 eldifsn 4675 . . . . . 6 (𝑓 ∈ (𝐶 ∖ {𝑌}) ↔ (𝑓𝐶𝑓𝑌))
1916, 17, 18sylanbrc 586 . . . . 5 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓 ∈ (𝐶 ∖ {𝑌}))
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 39141 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
21 simp1l3 1269 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ⊆ 𝑄)
22 eqimss2 3934 . . . . . . . . . . . . 13 ((𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
23223ad2ant3 1136 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓)))
24 mapdrval.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑈)
252, 4, 13dvhlmod 38747 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ LMod)
26253ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LMod)
2726adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LMod)
28273ad2ant1 1134 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LMod)
29153ad2ant1 1134 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3012lcfl1lem 39128 . . . . . . . . . . . . . . . . . . 19 (𝑓𝐶 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
3130simplbi 501 . . . . . . . . . . . . . . . . . 18 (𝑓𝐶𝑓𝐹)
32313ad2ant2 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝐹)
3332adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝐹)
34333ad2ant1 1134 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐹)
355, 8, 9, 28, 34lkrssv 36733 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝐿𝑓) ⊆ 𝑉)
362, 4, 5, 24, 3dochlss 38991 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑓) ⊆ 𝑉) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
3729, 35, 36syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑂‘(𝐿𝑓)) ∈ 𝑆)
38 eldifi 4017 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
39383ad2ant2 1135 . . . . . . . . . . . . 13 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑉)
405, 24, 6, 28, 37, 39lspsnel5 19886 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (𝑥 ∈ (𝑂‘(𝐿𝑓)) ↔ (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿𝑓))))
4123, 40mpbird 260 . . . . . . . . . . 11 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 ∈ (𝑂‘(𝐿𝑓)))
4221, 41sseldd 3878 . . . . . . . . . 10 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥𝑄)
43 mapdrval.q . . . . . . . . . 10 𝑄 = 𝑅 (𝑂‘(𝐿))
4442, 43eleqtrdi 2843 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑥 𝑅 (𝑂‘(𝐿)))
45 eliun 4885 . . . . . . . . 9 (𝑥 𝑅 (𝑂‘(𝐿)) ↔ ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
4644, 45sylib 221 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅 𝑥 ∈ (𝑂‘(𝐿)))
47 eqid 2738 . . . . . . . . . . 11 (Scalar‘𝑈) = (Scalar‘𝑈)
48 eqid 2738 . . . . . . . . . . 11 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
49 eqid 2738 . . . . . . . . . . 11 ( ·𝑠𝐷) = ( ·𝑠𝐷)
502, 4, 13dvhlvec 38746 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LVec)
51503ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑈 ∈ LVec)
5251adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑈 ∈ LVec)
53523ad2ant1 1134 . . . . . . . . . . . 12 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑈 ∈ LVec)
5453ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LVec)
55 simpr 488 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅)
56 simp1l1 1267 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝜑)
5756adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝜑)
58 mapdrval.e . . . . . . . . . . . . . . . 16 (𝜑𝑅𝐶)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝑅𝐶)
6059sseld 3876 . . . . . . . . . . . . . 14 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐶))
6112lcfl1lem 39128 . . . . . . . . . . . . . . 15 (𝐶 ↔ (𝐹 ∧ (𝑂‘(𝑂‘(𝐿))) = (𝐿)))
6261simplbi 501 . . . . . . . . . . . . . 14 (𝐶𝐹)
6360, 62syl6 35 . . . . . . . . . . . . 13 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑅𝐹))
6455, 63mpd 15 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐹)
6564adantr 484 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐹)
6634ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐹)
67 simpll3 1215 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}))
6828ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑈 ∈ LMod)
6929ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
705, 8, 9, 68, 65lkrssv 36733 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ⊆ 𝑉)
712, 4, 5, 24, 3dochlss 38991 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ 𝑉) → (𝑂‘(𝐿)) ∈ 𝑆)
7269, 70, 71syl2anc 587 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) ∈ 𝑆)
73 simpr 488 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑂‘(𝐿)))
7424, 6, 68, 72, 73lspsnel5a 19887 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)))
75 mapdrvallem2.a . . . . . . . . . . . . . . 15 𝐴 = (LSAtoms‘𝑈)
76 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
775, 6, 7, 75, 68, 76lsatlspsn 36630 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) ∈ 𝐴)
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 39094 . . . . . . . . . . . . . . 15 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) ∈ 𝐴 ∨ (𝑂‘(𝐿)) = { 0 }))
797, 75, 54, 77, 78lsatcmp2 36641 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑁‘{𝑥}) ⊆ (𝑂‘(𝐿)) ↔ (𝑁‘{𝑥}) = (𝑂‘(𝐿))))
8074, 79mpbid 235 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑁‘{𝑥}) = (𝑂‘(𝐿)))
8167, 80eqtr2d 2774 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)))
82 eqid 2738 . . . . . . . . . . . . 13 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
8356, 58syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑅𝐶)
8483sselda 3877 . . . . . . . . . . . . . . 15 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → 𝐶)
8584adantr 484 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝐶)
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 39133 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐶 ↔ (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
8785, 86mpbid 235 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) ∈ ran ((DIsoH‘𝐾)‘𝑊))
88 simp1l2 1268 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝐶)
8988ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → 𝑓𝐶)
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 39133 . . . . . . . . . . . . . 14 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝑓𝐶 ↔ (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
9189, 90mpbid 235 . . . . . . . . . . . . 13 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿𝑓) ∈ ran ((DIsoH‘𝐾)‘𝑊))
922, 82, 3, 69, 87, 91doch11 39010 . . . . . . . . . . . 12 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ((𝑂‘(𝐿)) = (𝑂‘(𝐿𝑓)) ↔ (𝐿) = (𝐿𝑓)))
9381, 92mpbid 235 . . . . . . . . . . 11 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → (𝐿) = (𝐿𝑓))
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 36802 . . . . . . . . . 10 ((((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) ∧ 𝑥 ∈ (𝑂‘(𝐿))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
9594ex 416 . . . . . . . . 9 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) ∧ 𝑅) → (𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9695reximdva 3184 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑅 𝑥 ∈ (𝑂‘(𝐿)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷))))
9746, 96mpd 15 . . . . . . 7 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)))
98 eleq1 2820 . . . . . . . . . 10 (𝑓 = (𝑟( ·𝑠𝐷)) → (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
9998reximi 3157 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
10099reximi 3157 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
101 rexcom 3259 . . . . . . . . 9 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))
102 df-rex 3059 . . . . . . . . . 10 (∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
103102rexbii 3161 . . . . . . . . 9 (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃𝑅 (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
104101, 103bitri 278 . . . . . . . 8 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))(𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) ↔ ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
105100, 104sylib 221 . . . . . . 7 (∃𝑅𝑟 ∈ (Base‘(Scalar‘𝑈))𝑓 = (𝑟( ·𝑠𝐷)) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
10697, 105syl 17 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → ∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)))
107 mapdrval.t . . . . . . . . . . . 12 𝑇 = (LSubSp‘𝐷)
10827ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑈 ∈ LMod)
109 mapdrval.r . . . . . . . . . . . . . . 15 (𝜑𝑅𝑇)
1101093ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑅𝑇)
111110adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑅𝑇)
112111ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅𝑇)
113 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑟 ∈ (Base‘(Scalar‘𝑈)))
114 simprl 771 . . . . . . . . . . . 12 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑅)
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 36795 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → (𝑟( ·𝑠𝐷)) ∈ 𝑅)
116 biimpr 223 . . . . . . . . . . . 12 ((𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
117116ad2antll 729 . . . . . . . . . . 11 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → ((𝑟( ·𝑠𝐷)) ∈ 𝑅𝑓𝑅))
118115, 117mpd 15 . . . . . . . . . 10 (((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) ∧ (𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅))) → 𝑓𝑅)
119118ex 416 . . . . . . . . 9 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → ((𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
120119exlimdv 1940 . . . . . . . 8 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑈))) → (∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
121120rexlimdva 3194 . . . . . . 7 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
1221213ad2ant1 1134 . . . . . 6 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → (∃𝑟 ∈ (Base‘(Scalar‘𝑈))∃(𝑅 ∧ (𝑓𝑅 ↔ (𝑟( ·𝑠𝐷)) ∈ 𝑅)) → 𝑓𝑅))
123106, 122mpd 15 . . . . 5 ((((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) ∧ 𝑥 ∈ (𝑉 ∖ { 0 }) ∧ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥})) → 𝑓𝑅)
124123rexlimdv3a 3196 . . . 4 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝑂‘(𝐿𝑓)) = (𝑁‘{𝑥}) → 𝑓𝑅))
12520, 124mpd 15 . . 3 (((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) ∧ 𝑓𝑌) → 𝑓𝑅)
12610, 25lduallmod 36790 . . . . 5 (𝜑𝐷 ∈ LMod)
1271263ad2ant1 1134 . . . 4 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝐷 ∈ LMod)
12811, 107lss0cl 19837 . . . 4 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → 𝑌𝑅)
129127, 110, 128syl2anc 587 . . 3 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑌𝑅)
1301, 125, 129pm2.61ne 3019 . 2 ((𝜑𝑓𝐶 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑄) → 𝑓𝑅)
131130rabssdv 3964 1 (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2934  wrex 3054  {crab 3057  cdif 3840  wss 3843  {csn 4516   ciun 4881  ran crn 5526  cfv 6339  (class class class)co 7170  Basecbs 16586  Scalarcsca 16671   ·𝑠 cvsca 16672  0gc0g 16816  LModclmod 19753  LSubSpclss 19822  LSpanclspn 19862  LVecclvec 19993  LSAtomsclsa 36611  LFnlclfn 36694  LKerclk 36722  LDualcld 36760  HLchlt 36987  LHypclh 37621  DVecHcdvh 38715  DIsoHcdih 38865  ocHcoch 38984  mapdcmpd 39261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-riotaBAD 36590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-undef 7968  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-lsm 18879  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994  df-lsatoms 36613  df-lshyp 36614  df-lfl 36695  df-lkr 36723  df-ldual 36761  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625  df-laut 37626  df-ldil 37741  df-ltrn 37742  df-trl 37796  df-tgrp 38380  df-tendo 38392  df-edring 38394  df-dveca 38640  df-disoa 38666  df-dvech 38716  df-dib 38776  df-dic 38810  df-dih 38866  df-doch 38985  df-djh 39032
This theorem is referenced by:  mapdrvallem3  39283
  Copyright terms: Public domain W3C validator