Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetALTN Structured version   Visualization version   GIF version

Theorem dihmeetALTN 41310
Description: Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetALT.b 𝐵 = (Base‘𝐾)
dihmeetALT.m = (meet‘𝐾)
dihmeetALT.h 𝐻 = (LHyp‘𝐾)
dihmeetALT.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihmeetALTN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem dihmeetALTN
StepHypRef Expression
1 simpl1l 1223 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝐾 ∈ HL)
21hllatd 39346 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝐾 ∈ Lat)
3 simpl2 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋𝐵)
4 simpl3 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑌𝐵)
5 dihmeetALT.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihmeetALT.m . . . . . 6 = (meet‘𝐾)
75, 6latmcom 18521 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
82, 3, 4, 7syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 𝑌) = (𝑌 𝑋))
98fveq2d 6911 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = (𝐼‘(𝑌 𝑋)))
10 simpl1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋(le‘𝐾)𝑊)
12 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
13 dihmeetALT.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihmeetALT.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 12, 6, 13, 14dihmeetbN 41286 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵 ∧ (𝑋𝐵𝑋(le‘𝐾)𝑊)) → (𝐼‘(𝑌 𝑋)) = ((𝐼𝑌) ∩ (𝐼𝑋)))
1610, 4, 3, 11, 15syl112anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑌 𝑋)) = ((𝐼𝑌) ∩ (𝐼𝑋)))
17 incom 4217 . . . 4 ((𝐼𝑌) ∩ (𝐼𝑋)) = ((𝐼𝑋) ∩ (𝐼𝑌))
1816, 17eqtrdi 2791 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑌 𝑋)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
199, 18eqtrd 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
20 simpll1 1211 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpll2 1212 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → 𝑋𝐵)
22 simpll3 1213 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → 𝑌𝐵)
23 simpr 484 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → 𝑌(le‘𝐾)𝑊)
245, 12, 6, 13, 14dihmeetbN 41286 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑌𝐵𝑌(le‘𝐾)𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2520, 21, 22, 23, 24syl112anc 1373 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2625adantlr 715 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) ∧ 𝑌(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
27 simp1l1 1265 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp1l2 1266 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → 𝑋𝐵)
29 simp1r 1197 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → ¬ 𝑋(le‘𝐾)𝑊)
30 simp1l3 1267 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → 𝑌𝐵)
31 simp3 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → ¬ 𝑌(le‘𝐾)𝑊)
3230, 31jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → (𝑌𝐵 ∧ ¬ 𝑌(le‘𝐾)𝑊))
33 simp2 1136 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → (𝑋 𝑌)(le‘𝐾)𝑊)
34 eqid 2735 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
35 eqid 2735 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
36 eqid 2735 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
37 eqid 2735 . . . . . . 7 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
385, 12, 13, 34, 6, 35, 36, 37, 14dihmeetlem20N 41309 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ((𝑌𝐵 ∧ ¬ 𝑌(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
3927, 28, 29, 32, 33, 38syl122anc 1378 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊 ∧ ¬ 𝑌(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
40393expa 1117 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) ∧ ¬ 𝑌(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
4126, 40pm2.61dan 813 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
42 simpll1 1211 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
43 simpll2 1212 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → 𝑋𝐵)
44 simpll3 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → 𝑌𝐵)
45 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → ¬ (𝑋 𝑌)(le‘𝐾)𝑊)
465, 12, 6, 13, 14dihmeetcN 41285 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
4742, 43, 44, 45, 46syl121anc 1374 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) ∧ ¬ (𝑋 𝑌)(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
4841, 47pm2.61dan 813 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
4919, 48pm2.61dan 813 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cin 3962   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Latclat 18489  LSSumclsm 19667  Atomscatm 39245  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  DIsoHcdih 41211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator