Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat3 Structured version   Visualization version   GIF version

Theorem hlrelat3 38913
Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat 38903. (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
hlrelat3.b 𝐡 = (Baseβ€˜πΎ)
hlrelat3.l ≀ = (leβ€˜πΎ)
hlrelat3.s < = (ltβ€˜πΎ)
hlrelat3.j ∨ = (joinβ€˜πΎ)
hlrelat3.c 𝐢 = ( β‹– β€˜πΎ)
hlrelat3.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlrelat3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   < ,𝑝   𝑋,𝑝   π‘Œ,𝑝
Allowed substitution hints:   𝐢(𝑝)   ∨ (𝑝)

Proof of Theorem hlrelat3
StepHypRef Expression
1 hlrelat3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 hlrelat3.l . . . 4 ≀ = (leβ€˜πΎ)
3 hlrelat3.s . . . 4 < = (ltβ€˜πΎ)
4 hlrelat3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4hlrelat1 38901 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
65imp 405 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ))
7 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ Β¬ 𝑝 ≀ 𝑋)
8 simp1l1 1263 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
9 simp1l2 1264 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 ∈ 𝐡)
10 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐴)
11 hlrelat3.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
12 hlrelat3.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
131, 2, 11, 12, 4cvr1 38911 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
148, 9, 10, 13syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
157, 14mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋𝐢(𝑋 ∨ 𝑝))
16 simp1l 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡))
17 simp1r 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 < π‘Œ)
182, 3pltle 18322 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ 𝑋 ≀ π‘Œ))
1916, 17, 18sylc 65 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
20 simp3r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ≀ π‘Œ)
218hllatd 38864 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝐾 ∈ Lat)
221, 4atbase 38789 . . . . . . . 8 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
2310, 22syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐡)
24 simp1l3 1265 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ π‘Œ ∈ 𝐡)
251, 2, 11latjle12 18439 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2621, 9, 23, 24, 25syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2719, 20, 26mpbi2and 710 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝑋 ∨ 𝑝) ≀ π‘Œ)
2815, 27jca 510 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
29283exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (𝑝 ∈ 𝐴 β†’ ((Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) β†’ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))))
3029reximdvai 3155 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)))
316, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060   class class class wbr 5141  β€˜cfv 6541  (class class class)co 7414  Basecbs 17177  lecple 17237  ltcplt 18297  joincjn 18300  Latclat 18420   β‹– ccvr 38762  Atomscatm 38763  HLchlt 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-lat 18421  df-clat 18488  df-oposet 38676  df-ol 38678  df-oml 38679  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851
This theorem is referenced by:  cvrval3  38914  athgt  38957  llnle  39019  lplnle  39041  llncvrlpln2  39058  lplncvrlvol2  39116  lhprelat3N  39541
  Copyright terms: Public domain W3C validator