Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat3 Structured version   Visualization version   GIF version

Theorem hlrelat3 39531
Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat 39521. (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
hlrelat3.b 𝐵 = (Base‘𝐾)
hlrelat3.l = (le‘𝐾)
hlrelat3.s < = (lt‘𝐾)
hlrelat3.j = (join‘𝐾)
hlrelat3.c 𝐶 = ( ⋖ ‘𝐾)
hlrelat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   < ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐶(𝑝)   (𝑝)

Proof of Theorem hlrelat3
StepHypRef Expression
1 hlrelat3.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat3.l . . . 4 = (le‘𝐾)
3 hlrelat3.s . . . 4 < = (lt‘𝐾)
4 hlrelat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 39519 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → ¬ 𝑝 𝑋)
8 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝐾 ∈ HL)
9 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋𝐵)
10 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝𝐴)
11 hlrelat3.j . . . . . . . 8 = (join‘𝐾)
12 hlrelat3.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
131, 2, 11, 12, 4cvr1 39529 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
148, 9, 10, 13syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
157, 14mpbid 232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋𝐶(𝑋 𝑝))
16 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵))
17 simp1r 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋 < 𝑌)
182, 3pltle 18239 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
1916, 17, 18sylc 65 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋 𝑌)
20 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝 𝑌)
218hllatd 39483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝐾 ∈ Lat)
221, 4atbase 39408 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
2310, 22syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝𝐵)
24 simp1l3 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑌𝐵)
251, 2, 11latjle12 18358 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑝𝐵𝑌𝐵)) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
2621, 9, 23, 24, 25syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
2719, 20, 26mpbi2and 712 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝑋 𝑝) 𝑌)
2815, 27jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
29283exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑝𝐴 → ((¬ 𝑝 𝑋𝑝 𝑌) → (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))))
3029reximdvai 3144 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)))
316, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  ltcplt 18216  joincjn 18219  Latclat 18339  ccvr 39381  Atomscatm 39382  HLchlt 39469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470
This theorem is referenced by:  cvrval3  39532  athgt  39575  llnle  39637  lplnle  39659  llncvrlpln2  39676  lplncvrlvol2  39734  lhprelat3N  40159
  Copyright terms: Public domain W3C validator