Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat3 Structured version   Visualization version   GIF version

Theorem hlrelat3 38221
Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat 38211. (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
hlrelat3.b 𝐵 = (Base‘𝐾)
hlrelat3.l = (le‘𝐾)
hlrelat3.s < = (lt‘𝐾)
hlrelat3.j = (join‘𝐾)
hlrelat3.c 𝐶 = ( ⋖ ‘𝐾)
hlrelat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   < ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐶(𝑝)   (𝑝)

Proof of Theorem hlrelat3
StepHypRef Expression
1 hlrelat3.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat3.l . . . 4 = (le‘𝐾)
3 hlrelat3.s . . . 4 < = (lt‘𝐾)
4 hlrelat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 38209 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 408 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → ¬ 𝑝 𝑋)
8 simp1l1 1267 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝐾 ∈ HL)
9 simp1l2 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋𝐵)
10 simp2 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝𝐴)
11 hlrelat3.j . . . . . . . 8 = (join‘𝐾)
12 hlrelat3.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
131, 2, 11, 12, 4cvr1 38219 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
148, 9, 10, 13syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
157, 14mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋𝐶(𝑋 𝑝))
16 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵))
17 simp1r 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋 < 𝑌)
182, 3pltle 18282 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
1916, 17, 18sylc 65 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑋 𝑌)
20 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝 𝑌)
218hllatd 38172 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝐾 ∈ Lat)
221, 4atbase 38097 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
2310, 22syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑝𝐵)
24 simp1l3 1269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → 𝑌𝐵)
251, 2, 11latjle12 18399 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑝𝐵𝑌𝐵)) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
2621, 9, 23, 24, 25syl13anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → ((𝑋 𝑌𝑝 𝑌) ↔ (𝑋 𝑝) 𝑌))
2719, 20, 26mpbi2and 711 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝑋 𝑝) 𝑌)
2815, 27jca 513 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋𝑝 𝑌)) → (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
29283exp 1120 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑝𝐴 → ((¬ 𝑝 𝑋𝑝 𝑌) → (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))))
3029reximdvai 3166 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)))
316, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071   class class class wbr 5147  cfv 6540  (class class class)co 7404  Basecbs 17140  lecple 17200  ltcplt 18257  joincjn 18260  Latclat 18380  ccvr 38070  Atomscatm 38071  HLchlt 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159
This theorem is referenced by:  cvrval3  38222  athgt  38265  llnle  38327  lplnle  38349  llncvrlpln2  38366  lplncvrlvol2  38424  lhprelat3N  38849
  Copyright terms: Public domain W3C validator