Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat3 Structured version   Visualization version   GIF version

Theorem hlrelat3 38796
Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat 38786. (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
hlrelat3.b 𝐡 = (Baseβ€˜πΎ)
hlrelat3.l ≀ = (leβ€˜πΎ)
hlrelat3.s < = (ltβ€˜πΎ)
hlrelat3.j ∨ = (joinβ€˜πΎ)
hlrelat3.c 𝐢 = ( β‹– β€˜πΎ)
hlrelat3.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlrelat3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   < ,𝑝   𝑋,𝑝   π‘Œ,𝑝
Allowed substitution hints:   𝐢(𝑝)   ∨ (𝑝)

Proof of Theorem hlrelat3
StepHypRef Expression
1 hlrelat3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 hlrelat3.l . . . 4 ≀ = (leβ€˜πΎ)
3 hlrelat3.s . . . 4 < = (ltβ€˜πΎ)
4 hlrelat3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4hlrelat1 38784 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ))
7 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ Β¬ 𝑝 ≀ 𝑋)
8 simp1l1 1263 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
9 simp1l2 1264 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 ∈ 𝐡)
10 simp2 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐴)
11 hlrelat3.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
12 hlrelat3.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
131, 2, 11, 12, 4cvr1 38794 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
148, 9, 10, 13syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
157, 14mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋𝐢(𝑋 ∨ 𝑝))
16 simp1l 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡))
17 simp1r 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 < π‘Œ)
182, 3pltle 18298 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ β†’ 𝑋 ≀ π‘Œ))
1916, 17, 18sylc 65 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
20 simp3r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ≀ π‘Œ)
218hllatd 38747 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝐾 ∈ Lat)
221, 4atbase 38672 . . . . . . . 8 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
2310, 22syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐡)
24 simp1l3 1265 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ π‘Œ ∈ 𝐡)
251, 2, 11latjle12 18415 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2621, 9, 23, 24, 25syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ ((𝑋 ≀ π‘Œ ∧ 𝑝 ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) ≀ π‘Œ))
2719, 20, 26mpbi2and 709 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝑋 ∨ 𝑝) ≀ π‘Œ)
2815, 27jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ)) β†’ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
29283exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (𝑝 ∈ 𝐴 β†’ ((Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) β†’ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))))
3029reximdvai 3159 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ 𝑝 ≀ π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)))
316, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  ltcplt 18273  joincjn 18276  Latclat 18396   β‹– ccvr 38645  Atomscatm 38646  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734
This theorem is referenced by:  cvrval3  38797  athgt  38840  llnle  38902  lplnle  38924  llncvrlpln2  38941  lplncvrlvol2  38999  lhprelat3N  39424
  Copyright terms: Public domain W3C validator