Proof of Theorem itschlc0xyqsol
Step | Hyp | Ref
| Expression |
1 | | itscnhlc0yqe.q |
. . 3
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
2 | | itsclc0yqsol.d |
. . 3
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
3 | 1, 2 | itschlc0xyqsol1 46000 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵))))) |
4 | | orcom 866 |
. . . 4
⊢ ((𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵)) ↔ (𝑋 = ((√‘𝐷) / 𝐵) ∨ 𝑋 = -((√‘𝐷) / 𝐵))) |
5 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 = 0 → (𝐴 · 𝐶) = (0 · 𝐶)) |
6 | 5 | ad2antrl 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐶) = (0 · 𝐶)) |
7 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · 𝐶) = (0 · 𝐶)) |
8 | | simpll3 1212 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) |
9 | 8 | recnd 10934 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℂ) |
10 | 9 | mul02d 11103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (0 ·
𝐶) = 0) |
11 | 7, 10 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · 𝐶) = 0) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = (0 + (𝐵 · (√‘𝐷)))) |
13 | | simpll2 1211 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℝ) |
14 | 13 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℂ) |
15 | | rpre 12667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) |
17 | 16 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℂ) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑅 ∈
ℂ) |
19 | 18 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑅↑2) ∈
ℂ) |
20 | 1 | resum2sqcl 45940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) |
21 | 20 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℂ) |
22 | 21 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ∈
ℂ) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → 𝑄 ∈ ℂ) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℂ) |
25 | 19, 24 | mulcld 10926 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑅↑2) · 𝑄) ∈
ℂ) |
26 | 9 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐶↑2) ∈
ℂ) |
27 | 25, 26 | subcld 11262 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ) |
28 | 2, 27 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℂ) |
29 | 28 | sqrtcld 15077 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
(√‘𝐷) ∈
ℂ) |
30 | 14, 29 | mulcld 10926 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (√‘𝐷)) ∈
ℂ) |
31 | 30 | addid2d 11106 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (0 + (𝐵 · (√‘𝐷))) = (𝐵 · (√‘𝐷))) |
32 | 12, 31 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = (𝐵 · (√‘𝐷))) |
33 | 32 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = ((𝐵 · (√‘𝐷)) / 𝑄)) |
34 | | sq0i 13838 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = 0 → (𝐴↑2) = 0) |
35 | 34 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) = 0) |
36 | 35 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) + (𝐵↑2)) = (0 + (𝐵↑2))) |
37 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℝ) |
38 | 37 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℂ) |
39 | 38 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) ∈
ℂ) |
40 | 39 | addid2d 11106 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 +
(𝐵↑2)) = (𝐵↑2)) |
41 | 38 | sqvald 13789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) = (𝐵 · 𝐵)) |
42 | 40, 41 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 +
(𝐵↑2)) = (𝐵 · 𝐵)) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → (0 + (𝐵↑2)) = (𝐵 · 𝐵)) |
44 | 36, 43 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) + (𝐵↑2)) = (𝐵 · 𝐵)) |
45 | 1, 44 | syl5eq 2791 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → 𝑄 = (𝐵 · 𝐵)) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 = (𝐵 · 𝐵)) |
47 | 46 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (√‘𝐷)) / 𝑄) = ((𝐵 · (√‘𝐷)) / (𝐵 · 𝐵))) |
48 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ≠ 0) |
49 | 29, 14, 14, 48, 48 | divcan5d 11707 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (√‘𝐷)) / (𝐵 · 𝐵)) = ((√‘𝐷) / 𝐵)) |
50 | 47, 49 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (√‘𝐷)) / 𝑄) = ((√‘𝐷) / 𝐵)) |
51 | 33, 50 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = ((√‘𝐷) / 𝐵)) |
52 | 51 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = ((√‘𝐷) / 𝐵)) |
53 | 52 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = ((√‘𝐷) / 𝐵)) |
54 | 53 | eqcomd 2744 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → ((√‘𝐷) / 𝐵) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
55 | 54 | eqeq2d 2749 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = ((√‘𝐷) / 𝐵) ↔ 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
56 | 55 | biimpd 228 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = ((√‘𝐷) / 𝐵) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
57 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = 0 → (𝐴 · (√‘𝐷)) = (0 · (√‘𝐷))) |
58 | 57 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) → (𝐴 · (√‘𝐷)) = (0 · (√‘𝐷))) |
59 | 58 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (√‘𝐷)) = (0 ·
(√‘𝐷))) |
60 | 29 | mul02d 11103 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (0 ·
(√‘𝐷)) =
0) |
61 | 59, 60 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (√‘𝐷)) = 0) |
62 | 61 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) − 0)) |
63 | 14, 9 | mulcld 10926 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · 𝐶) ∈ ℂ) |
64 | 63 | subid1d 11251 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · 𝐶) − 0) = (𝐵 · 𝐶)) |
65 | 62, 64 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = (𝐵 · 𝐶)) |
66 | 65, 46 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) = ((𝐵 · 𝐶) / (𝐵 · 𝐵))) |
67 | 66 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) = ((𝐵 · 𝐶) / (𝐵 · 𝐵))) |
68 | 9 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) |
69 | 14 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) |
70 | | simp1rr 1237 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ≠ 0) |
71 | 68, 69, 69, 70, 70 | divcan5d 11707 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) / (𝐵 · 𝐵)) = (𝐶 / 𝐵)) |
72 | 67, 71 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶 / 𝐵) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) |
73 | 72 | eqeq2d 2749 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (𝐶 / 𝐵) ↔ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) |
74 | 73 | biimpa 476 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) |
75 | 56, 74 | jctird 526 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = ((√‘𝐷) / 𝐵) → (𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) |
76 | 14, 29 | mulneg2d 11359 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · -(√‘𝐷)) = -(𝐵 · (√‘𝐷))) |
77 | 76 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → -(𝐵 · (√‘𝐷)) = (𝐵 · -(√‘𝐷))) |
78 | 77, 46 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (-(𝐵 · (√‘𝐷)) / 𝑄) = ((𝐵 · -(√‘𝐷)) / (𝐵 · 𝐵))) |
79 | 29 | negcld 11249 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
-(√‘𝐷) ∈
ℂ) |
80 | 79, 14, 14, 48, 48 | divcan5d 11707 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · -(√‘𝐷)) / (𝐵 · 𝐵)) = (-(√‘𝐷) / 𝐵)) |
81 | 78, 80 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (-(𝐵 · (√‘𝐷)) / 𝑄) = (-(√‘𝐷) / 𝐵)) |
82 | 11 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) = (0 − (𝐵 · (√‘𝐷)))) |
83 | | df-neg 11138 |
. . . . . . . . . . . . . 14
⊢ -(𝐵 · (√‘𝐷)) = (0 − (𝐵 · (√‘𝐷))) |
84 | 82, 83 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) = -(𝐵 · (√‘𝐷))) |
85 | 84 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) = (-(𝐵 · (√‘𝐷)) / 𝑄)) |
86 | 29, 14, 48 | divnegd 11694 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
-((√‘𝐷) / 𝐵) = (-(√‘𝐷) / 𝐵)) |
87 | 81, 85, 86 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) = -((√‘𝐷) / 𝐵)) |
88 | 87 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) = -((√‘𝐷) / 𝐵)) |
89 | 88 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) = -((√‘𝐷) / 𝐵)) |
90 | 89 | eqcomd 2744 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → -((√‘𝐷) / 𝐵) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
91 | 90 | eqeq2d 2749 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = -((√‘𝐷) / 𝐵) ↔ 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
92 | 91 | biimpd 228 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = -((√‘𝐷) / 𝐵) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
93 | 58 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · (√‘𝐷)) = (0 · (√‘𝐷))) |
94 | 17 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑅 ∈ ℂ) |
95 | 94 | sqcld 13790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑅↑2) ∈ ℂ) |
96 | 23 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℂ) |
97 | 95, 96 | mulcld 10926 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑅↑2) · 𝑄) ∈ ℂ) |
98 | | simp1l3 1266 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ) |
99 | 98 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) |
100 | 99 | sqcld 13790 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℂ) |
101 | 97, 100 | subcld 11262 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℂ) |
102 | 2, 101 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℂ) |
103 | 102 | sqrtcld 15077 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘𝐷) ∈
ℂ) |
104 | 103 | mul02d 11103 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 ·
(√‘𝐷)) =
0) |
105 | 93, 104 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · (√‘𝐷)) = 0) |
106 | 105 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + 0)) |
107 | | simp1l2 1265 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ) |
108 | 107 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) |
109 | 108, 99 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ) |
110 | 109 | addid1d 11105 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + 0) = (𝐵 · 𝐶)) |
111 | 106, 110 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) = (𝐵 · 𝐶)) |
112 | 45 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 = (𝐵 · 𝐵)) |
113 | 111, 112 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) = ((𝐵 · 𝐶) / (𝐵 · 𝐵))) |
114 | 99, 108, 108, 70, 70 | divcan5d 11707 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) / (𝐵 · 𝐵)) = (𝐶 / 𝐵)) |
115 | 113, 114 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶 / 𝐵) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) |
116 | 115 | eqeq2d 2749 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (𝐶 / 𝐵) ↔ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
117 | 116 | biimpa 476 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) |
118 | 92, 117 | jctird 526 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → (𝑋 = -((√‘𝐷) / 𝐵) → (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
119 | 75, 118 | orim12d 961 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → ((𝑋 = ((√‘𝐷) / 𝐵) ∨ 𝑋 = -((√‘𝐷) / 𝐵)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
120 | 4, 119 | syl5bi 241 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ ∧ 𝐶 ∈
ℝ) ∧ (𝐴 = 0 ∧
𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) ∧
(𝑋 ∈ ℝ ∧
𝑌 ∈ ℝ)) ∧
𝑌 = (𝐶 / 𝐵)) → ((𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
121 | 120 | expimpd 453 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵))) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
122 | 3, 121 | syld 47 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |