Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord5b Structured version   Visualization version   GIF version

Theorem dihord5b 38503
Description: Part of proof that isomorphism H is order-preserving. TODO: eliminate 3ad2ant1; combine with other way to have one lhpmcvr2 . (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b 𝐵 = (Base‘𝐾)
dihord3.l = (le‘𝐾)
dihord3.h 𝐻 = (LHyp‘𝐾)
dihord3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihord5b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))

Proof of Theorem dihord5b
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝑌𝐵 ∧ ¬ 𝑌 𝑊))
3 dihord3.b . . . 4 𝐵 = (Base‘𝐾)
4 dihord3.l . . . 4 = (le‘𝐾)
5 eqid 2824 . . . 4 (join‘𝐾) = (join‘𝐾)
6 eqid 2824 . . . 4 (meet‘𝐾) = (meet‘𝐾)
7 eqid 2824 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
8 dihord3.h . . . 4 𝐻 = (LHyp‘𝐾)
93, 4, 5, 6, 7, 8lhpmcvr2 37268 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
101, 2, 9syl2anc 587 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌))
11 simp1r 1195 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 𝑌)
12 simpl2r 1224 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → 𝑋 𝑊)
13123ad2ant1 1130 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 𝑊)
14 simpl1l 1221 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
15143ad2ant1 1130 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝐾 ∈ HL)
1615hllatd 36608 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝐾 ∈ Lat)
17 simpl2l 1223 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → 𝑋𝐵)
18173ad2ant1 1130 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋𝐵)
19 simpl3l 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → 𝑌𝐵)
20193ad2ant1 1130 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑌𝐵)
21 simpl1r 1222 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → 𝑊𝐻)
22213ad2ant1 1130 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑊𝐻)
233, 8lhpbase 37242 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
2422, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑊𝐵)
253, 4, 6latlem12 17688 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → ((𝑋 𝑌𝑋 𝑊) ↔ 𝑋 (𝑌(meet‘𝐾)𝑊)))
2616, 18, 20, 24, 25syl13anc 1369 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((𝑋 𝑌𝑋 𝑊) ↔ 𝑋 (𝑌(meet‘𝐾)𝑊)))
2711, 13, 26mpbi2and 711 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 (𝑌(meet‘𝐾)𝑊))
28 simp1l1 1263 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simp1l2 1264 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑋𝐵𝑋 𝑊))
303, 6latmcl 17662 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌(meet‘𝐾)𝑊) ∈ 𝐵)
3116, 20, 24, 30syl3anc 1368 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌(meet‘𝐾)𝑊) ∈ 𝐵)
323, 4, 6latmle2 17687 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌(meet‘𝐾)𝑊) 𝑊)
3316, 20, 24, 32syl3anc 1368 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌(meet‘𝐾)𝑊) 𝑊)
34 eqid 2824 . . . . . . . . . . 11 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
353, 4, 8, 34dibord 38403 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ ((𝑌(meet‘𝐾)𝑊) ∈ 𝐵 ∧ (𝑌(meet‘𝐾)𝑊) 𝑊)) → ((((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ↔ 𝑋 (𝑌(meet‘𝐾)𝑊)))
3628, 29, 31, 33, 35syl112anc 1371 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ↔ 𝑋 (𝑌(meet‘𝐾)𝑊)))
3727, 36mpbird 260 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))
38 eqid 2824 . . . . . . . . . . . 12 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
398, 38, 28dvhlmod 38354 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((DVecH‘𝐾)‘𝑊) ∈ LMod)
40 eqid 2824 . . . . . . . . . . . 12 (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊))
4140lsssssubg 19730 . . . . . . . . . . 11 (((DVecH‘𝐾)‘𝑊) ∈ LMod → (LSubSp‘((DVecH‘𝐾)‘𝑊)) ⊆ (SubGrp‘((DVecH‘𝐾)‘𝑊)))
4239, 41syl 17 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (LSubSp‘((DVecH‘𝐾)‘𝑊)) ⊆ (SubGrp‘((DVecH‘𝐾)‘𝑊)))
43 simp2 1134 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊))
44 eqid 2824 . . . . . . . . . . . 12 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
454, 7, 8, 38, 44, 40diclss 38437 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊)))
4628, 43, 45syl2anc 587 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊)))
4742, 46sseldd 3954 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊)))
483, 4, 8, 38, 34, 40diblss 38414 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑌(meet‘𝐾)𝑊) ∈ 𝐵 ∧ (𝑌(meet‘𝐾)𝑊) 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊)))
4928, 31, 33, 48syl12anc 835 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊)))
5042, 49sseldd 3954 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊)))
51 eqid 2824 . . . . . . . . . 10 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
5251lsmub2 18783 . . . . . . . . 9 (((((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊)) ∧ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊))) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
5347, 50, 52syl2anc 587 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
5437, 53sstrd 3963 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
55 dihord3.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
563, 4, 8, 55, 34dihvalb 38481 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋))
5728, 29, 56syl2anc 587 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋))
58 simp1l3 1265 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌𝐵 ∧ ¬ 𝑌 𝑊))
59 simp3 1135 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)
603, 4, 5, 6, 7, 8, 55, 34, 44, 38, 51dihvalcq 38480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊) ∧ ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6128, 58, 43, 59, 60syl112anc 1371 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))))
6254, 57, 613sstr4d 4000 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))
63623exp 1116 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 𝑊) → ((𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 → (𝐼𝑋) ⊆ (𝐼𝑌))))
6463expd 419 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝑟 ∈ (Atoms‘𝐾) → (¬ 𝑟 𝑊 → ((𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 → (𝐼𝑋) ⊆ (𝐼𝑌)))))
6564imp4a 426 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝑟 ∈ (Atoms‘𝐾) → ((¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))))
6665rexlimdv 3275 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌)))
6710, 66mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wrex 3134  wss 3919   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Latclat 17655  SubGrpcsubg 18273  LSSumclsm 18759  LModclmod 19634  LSubSpclss 19703  Atomscatm 36507  HLchlt 36594  LHypclh 37228  DVecHcdvh 38322  DIsoBcdib 38382  DIsoCcdic 38416  DIsoHcdih 38472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-riotaBAD 36197
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-undef 7935  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-oposet 36420  df-ol 36422  df-oml 36423  df-covers 36510  df-ats 36511  df-atl 36542  df-cvlat 36566  df-hlat 36595  df-llines 36742  df-lplanes 36743  df-lvols 36744  df-lines 36745  df-psubsp 36747  df-pmap 36748  df-padd 37040  df-lhyp 37232  df-laut 37233  df-ldil 37348  df-ltrn 37349  df-trl 37403  df-tendo 37999  df-edring 38001  df-disoa 38273  df-dvech 38323  df-dib 38383  df-dic 38417  df-dih 38473
This theorem is referenced by:  dihord  38508
  Copyright terms: Public domain W3C validator