| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simpl3 1194 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) |
| 3 | | dihord3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 4 | | dihord3.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 5 | | eqid 2736 |
. . . 4
⊢
(join‘𝐾) =
(join‘𝐾) |
| 6 | | eqid 2736 |
. . . 4
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 7 | | eqid 2736 |
. . . 4
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 8 | | dihord3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | 3, 4, 5, 6, 7, 8 | lhpmcvr2 40048 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) |
| 10 | 1, 2, 9 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → ∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) |
| 11 | | simp1r 1199 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 ≤ 𝑌) |
| 12 | | simpl2r 1228 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑊) |
| 13 | 12 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 ≤ 𝑊) |
| 14 | | simpl1l 1225 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ HL) |
| 15 | 14 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝐾 ∈ HL) |
| 16 | 15 | hllatd 39387 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝐾 ∈ Lat) |
| 17 | | simpl2l 1227 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) |
| 18 | 17 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 ∈ 𝐵) |
| 19 | | simpl3l 1229 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) |
| 20 | 19 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑌 ∈ 𝐵) |
| 21 | | simpl1r 1226 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → 𝑊 ∈ 𝐻) |
| 22 | 21 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑊 ∈ 𝐻) |
| 23 | 3, 8 | lhpbase 40022 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑊 ∈ 𝐵) |
| 25 | 3, 4, 6 | latlem12 18481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑊) ↔ 𝑋 ≤ (𝑌(meet‘𝐾)𝑊))) |
| 26 | 16, 18, 20, 24, 25 | syl13anc 1374 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑊) ↔ 𝑋 ≤ (𝑌(meet‘𝐾)𝑊))) |
| 27 | 11, 13, 26 | mpbi2and 712 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → 𝑋 ≤ (𝑌(meet‘𝐾)𝑊)) |
| 28 | | simp1l1 1267 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 29 | | simp1l2 1268 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 30 | 3, 6 | latmcl 18455 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌(meet‘𝐾)𝑊) ∈ 𝐵) |
| 31 | 16, 20, 24, 30 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌(meet‘𝐾)𝑊) ∈ 𝐵) |
| 32 | 3, 4, 6 | latmle2 18480 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌(meet‘𝐾)𝑊) ≤ 𝑊) |
| 33 | 16, 20, 24, 32 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌(meet‘𝐾)𝑊) ≤ 𝑊) |
| 34 | | eqid 2736 |
. . . . . . . . . . 11
⊢
((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) |
| 35 | 3, 4, 8, 34 | dibord 41183 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ ((𝑌(meet‘𝐾)𝑊) ∈ 𝐵 ∧ (𝑌(meet‘𝐾)𝑊) ≤ 𝑊)) → ((((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ↔ 𝑋 ≤ (𝑌(meet‘𝐾)𝑊))) |
| 36 | 28, 29, 31, 33, 35 | syl112anc 1376 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ↔ 𝑋 ≤ (𝑌(meet‘𝐾)𝑊))) |
| 37 | 27, 36 | mpbird 257 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊))) |
| 38 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) |
| 39 | 8, 38, 28 | dvhlmod 41134 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → ((DVecH‘𝐾)‘𝑊) ∈ LMod) |
| 40 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) |
| 41 | 40 | lsssssubg 20920 |
. . . . . . . . . . 11
⊢
(((DVecH‘𝐾)‘𝑊) ∈ LMod →
(LSubSp‘((DVecH‘𝐾)‘𝑊)) ⊆ (SubGrp‘((DVecH‘𝐾)‘𝑊))) |
| 42 | 39, 41 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (LSubSp‘((DVecH‘𝐾)‘𝑊)) ⊆ (SubGrp‘((DVecH‘𝐾)‘𝑊))) |
| 43 | | simp2 1137 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) |
| 44 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) |
| 45 | 4, 7, 8, 38, 44, 40 | diclss 41217 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
| 46 | 28, 43, 45 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
| 47 | 42, 46 | sseldd 3964 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊))) |
| 48 | 3, 4, 8, 38, 34, 40 | diblss 41194 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌(meet‘𝐾)𝑊) ∈ 𝐵 ∧ (𝑌(meet‘𝐾)𝑊) ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
| 49 | 28, 31, 33, 48 | syl12anc 836 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
| 50 | 42, 49 | sseldd 3964 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊))) |
| 51 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) |
| 52 | 51 | lsmub2 19644 |
. . . . . . . . 9
⊢
(((((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊)) ∧ (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ∈ (SubGrp‘((DVecH‘𝐾)‘𝑊))) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 53 | 47, 50, 52 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 54 | 37, 53 | sstrd 3974 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (((DIsoB‘𝐾)‘𝑊)‘𝑋) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 55 | | dihord3.i |
. . . . . . . . 9
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| 56 | 3, 4, 8, 55, 34 | dihvalb 41261 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
| 57 | 28, 29, 56 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
| 58 | | simp1l3 1269 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) |
| 59 | | simp3 1138 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) |
| 60 | 3, 4, 5, 6, 7, 8, 55, 34, 44, 38, 51 | dihvalcq 41260 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌)) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 61 | 28, 58, 43, 59, 60 | syl112anc 1376 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟)(LSSum‘((DVecH‘𝐾)‘𝑊))(((DIsoB‘𝐾)‘𝑊)‘(𝑌(meet‘𝐾)𝑊)))) |
| 62 | 54, 57, 61 | 3sstr4d 4019 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
| 63 | 62 | 3exp 1119 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → ((𝑟 ∈ (Atoms‘𝐾) ∧ ¬ 𝑟 ≤ 𝑊) → ((𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)))) |
| 64 | 63 | expd 415 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝑟 ∈ (Atoms‘𝐾) → (¬ 𝑟 ≤ 𝑊 → ((𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌 → (𝐼‘𝑋) ⊆ (𝐼‘𝑌))))) |
| 65 | 64 | imp4a 422 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝑟 ∈ (Atoms‘𝐾) → ((¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)))) |
| 66 | 65 | rexlimdv 3140 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (∃𝑟 ∈ (Atoms‘𝐾)(¬ 𝑟 ≤ 𝑊 ∧ (𝑟(join‘𝐾)(𝑌(meet‘𝐾)𝑊)) = 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌))) |
| 67 | 10, 66 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |