Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncmp Structured version   Visualization version   GIF version

Theorem lncmp 39785
Description: If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
lncmp.b 𝐵 = (Base‘𝐾)
lncmp.l = (le‘𝐾)
lncmp.n 𝑁 = (Lines‘𝐾)
lncmp.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncmp (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lncmp
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 777 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (𝑀𝑋) ∈ 𝑁)
2 simpll1 1213 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpll2 1214 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 lncmp.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 eqid 2737 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
6 eqid 2737 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
7 lncmp.n . . . . . . 7 𝑁 = (Lines‘𝐾)
8 lncmp.m . . . . . . 7 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8isline3 39778 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
102, 3, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
111, 10mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))
12 simp3rr 1248 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = (𝑝(join‘𝐾)𝑞))
13 simp1l1 1267 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ HL)
14 simp1l3 1269 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌𝐵)
15 simp1rr 1240 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → (𝑀𝑌) ∈ 𝑁)
16 simp3ll 1245 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 ∈ (Atoms‘𝐾))
17 simp3lr 1246 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 ∈ (Atoms‘𝐾))
18 simp3rl 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝑞)
19 lncmp.l . . . . . . . . . 10 = (le‘𝐾)
2013hllatd 39365 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ Lat)
214, 6atbase 39290 . . . . . . . . . . 11 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2216, 21syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝐵)
23 simp1l2 1268 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋𝐵)
2419, 5, 6hlatlej1 39376 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑝 (𝑝(join‘𝐾)𝑞))
2513, 16, 17, 24syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 (𝑝(join‘𝐾)𝑞))
2625, 12breqtrrd 5171 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑋)
27 simp2 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 𝑌)
284, 19, 20, 22, 23, 14, 26, 27lattrd 18491 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑌)
294, 6atbase 39290 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
3017, 29syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞𝐵)
3119, 5, 6hlatlej2 39377 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑞 (𝑝(join‘𝐾)𝑞))
3213, 16, 17, 31syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 (𝑝(join‘𝐾)𝑞))
3332, 12breqtrrd 5171 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑋)
344, 19, 20, 30, 23, 14, 33, 27lattrd 18491 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑌)
354, 19, 5, 6, 7, 8lneq2at 39780 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑌𝐵 ∧ (𝑀𝑌) ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑝𝑞) ∧ (𝑝 𝑌𝑞 𝑌)) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3613, 14, 15, 16, 17, 18, 28, 34, 35syl332anc 1403 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3712, 36eqtr4d 2780 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = 𝑌)
38373expia 1122 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → 𝑋 = 𝑌))
3938expd 415 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌)))
4039rexlimdvv 3212 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌))
4111, 40mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
4241ex 412 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
43 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ HL)
4443hllatd 39365 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ Lat)
45 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋𝐵)
464, 19latref 18486 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
4744, 45, 46syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋 𝑋)
48 breq2 5147 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4947, 48syl5ibcom 245 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 = 𝑌𝑋 𝑌))
5042, 49impbid 212 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Latclat 18476  Atomscatm 39264  HLchlt 39351  Linesclines 39496  pmapcpmap 39499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lines 39503  df-pmap 39506
This theorem is referenced by:  2lnat  39786
  Copyright terms: Public domain W3C validator