Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncmp Structured version   Visualization version   GIF version

Theorem lncmp 39383
Description: If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
lncmp.b 𝐵 = (Base‘𝐾)
lncmp.l = (le‘𝐾)
lncmp.n 𝑁 = (Lines‘𝐾)
lncmp.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncmp (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lncmp
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 775 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (𝑀𝑋) ∈ 𝑁)
2 simpll1 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpll2 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 lncmp.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 eqid 2725 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
6 eqid 2725 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
7 lncmp.n . . . . . . 7 𝑁 = (Lines‘𝐾)
8 lncmp.m . . . . . . 7 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8isline3 39376 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
102, 3, 9syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
111, 10mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))
12 simp3rr 1244 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = (𝑝(join‘𝐾)𝑞))
13 simp1l1 1263 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ HL)
14 simp1l3 1265 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌𝐵)
15 simp1rr 1236 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → (𝑀𝑌) ∈ 𝑁)
16 simp3ll 1241 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 ∈ (Atoms‘𝐾))
17 simp3lr 1242 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 ∈ (Atoms‘𝐾))
18 simp3rl 1243 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝑞)
19 lncmp.l . . . . . . . . . 10 = (le‘𝐾)
2013hllatd 38963 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ Lat)
214, 6atbase 38888 . . . . . . . . . . 11 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2216, 21syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝐵)
23 simp1l2 1264 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋𝐵)
2419, 5, 6hlatlej1 38974 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑝 (𝑝(join‘𝐾)𝑞))
2513, 16, 17, 24syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 (𝑝(join‘𝐾)𝑞))
2625, 12breqtrrd 5177 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑋)
27 simp2 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 𝑌)
284, 19, 20, 22, 23, 14, 26, 27lattrd 18441 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑌)
294, 6atbase 38888 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
3017, 29syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞𝐵)
3119, 5, 6hlatlej2 38975 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑞 (𝑝(join‘𝐾)𝑞))
3213, 16, 17, 31syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 (𝑝(join‘𝐾)𝑞))
3332, 12breqtrrd 5177 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑋)
344, 19, 20, 30, 23, 14, 33, 27lattrd 18441 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑌)
354, 19, 5, 6, 7, 8lneq2at 39378 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑌𝐵 ∧ (𝑀𝑌) ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑝𝑞) ∧ (𝑝 𝑌𝑞 𝑌)) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3613, 14, 15, 16, 17, 18, 28, 34, 35syl332anc 1398 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3712, 36eqtr4d 2768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = 𝑌)
38373expia 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → 𝑋 = 𝑌))
3938expd 414 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌)))
4039rexlimdvv 3200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌))
4111, 40mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
4241ex 411 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
43 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ HL)
4443hllatd 38963 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ Lat)
45 simpl2 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋𝐵)
464, 19latref 18436 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
4744, 45, 46syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋 𝑋)
48 breq2 5153 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4947, 48syl5ibcom 244 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 = 𝑌𝑋 𝑌))
5042, 49impbid 211 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  joincjn 18306  Latclat 18426  Atomscatm 38862  HLchlt 38949  Linesclines 39094  pmapcpmap 39097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-clat 18494  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950  df-lines 39101  df-pmap 39104
This theorem is referenced by:  2lnat  39384
  Copyright terms: Public domain W3C validator