Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 39370
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐵 = (Base‘𝐾)
cvrval3.l = (le‘𝐾)
cvrval3.j = (join‘𝐾)
cvrval3.c 𝐶 = ( ⋖ ‘𝐾)
cvrval3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐵 = (Base‘𝐾)
2 eqid 2740 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
3 cvrval3.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 39226 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrval3.l . . . . . 6 = (le‘𝐾)
6 cvrval3.j . . . . . 6 = (join‘𝐾)
7 cvrval3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
81, 5, 2, 6, 3, 7hlrelat3 39369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
94, 8syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
10 simp3l 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶(𝑋 𝑝))
11 simp1l1 1266 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ HL)
12 simp1l2 1267 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐵)
13 simp2 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐴)
141, 5, 6, 3, 7cvr1 39367 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1511, 12, 13, 14syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1610, 15mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ¬ 𝑝 𝑋)
1711hllatd 39320 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Lat)
181, 7atbase 39245 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐵)
201, 6latjcl 18509 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) ∈ 𝐵)
2117, 12, 19, 20syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) ∈ 𝐵)
221, 2, 3cvrlt 39226 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑝)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
2311, 12, 21, 10, 22syl31anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
24 simp3r 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) 𝑌)
25 hlpos 39322 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2611, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Poset)
27 simp1l3 1268 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑌𝐵)
28 simp1r 1198 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶𝑌)
291, 5, 2, 3cvrnbtwn2 39231 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3026, 12, 27, 21, 28, 29syl131anc 1383 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3123, 24, 30mpbi2and 711 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) = 𝑌)
3216, 31jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
33323exp 1119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑝𝐴 → ((𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))))
3433reximdvai 3171 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
359, 34mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
3635ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
37 simp3l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → ¬ 𝑝 𝑋)
38 simp11 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝐾 ∈ HL)
39 simp12 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐵)
40 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑝𝐴)
4138, 39, 40, 14syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
4237, 41mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶(𝑋 𝑝))
43 simp3r 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (𝑋 𝑝) = 𝑌)
4442, 43breqtrd 5192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶𝑌)
4544rexlimdv3a 3165 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
4636, 45impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  joincjn 18381  Latclat 18501  ccvr 39218  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  cvrval4N  39371  cvrval5  39372  islln3  39467  llnexatN  39478  islpln3  39490  lplnexatN  39520  islvol3  39533  isline4N  39734  lhpexnle  39963
  Copyright terms: Public domain W3C validator