Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 37164
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐵 = (Base‘𝐾)
cvrval3.l = (le‘𝐾)
cvrval3.j = (join‘𝐾)
cvrval3.c 𝐶 = ( ⋖ ‘𝐾)
cvrval3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐵 = (Base‘𝐾)
2 eqid 2737 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
3 cvrval3.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 37021 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrval3.l . . . . . 6 = (le‘𝐾)
6 cvrval3.j . . . . . 6 = (join‘𝐾)
7 cvrval3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
81, 5, 2, 6, 3, 7hlrelat3 37163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
94, 8syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
10 simp3l 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶(𝑋 𝑝))
11 simp1l1 1268 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ HL)
12 simp1l2 1269 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐵)
13 simp2 1139 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐴)
141, 5, 6, 3, 7cvr1 37161 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1511, 12, 13, 14syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1610, 15mpbird 260 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ¬ 𝑝 𝑋)
1711hllatd 37115 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Lat)
181, 7atbase 37040 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1136 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐵)
201, 6latjcl 17945 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) ∈ 𝐵)
2117, 12, 19, 20syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) ∈ 𝐵)
221, 2, 3cvrlt 37021 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑝)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
2311, 12, 21, 10, 22syl31anc 1375 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
24 simp3r 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) 𝑌)
25 hlpos 37117 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2611, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Poset)
27 simp1l3 1270 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑌𝐵)
28 simp1r 1200 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶𝑌)
291, 5, 2, 3cvrnbtwn2 37026 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3026, 12, 27, 21, 28, 29syl131anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3123, 24, 30mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) = 𝑌)
3216, 31jca 515 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
33323exp 1121 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑝𝐴 → ((𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))))
3433reximdvai 3191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
359, 34mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
3635ex 416 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
37 simp3l 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → ¬ 𝑝 𝑋)
38 simp11 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝐾 ∈ HL)
39 simp12 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐵)
40 simp2 1139 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑝𝐴)
4138, 39, 40, 14syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
4237, 41mpbid 235 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶(𝑋 𝑝))
43 simp3r 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (𝑋 𝑝) = 𝑌)
4442, 43breqtrd 5079 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶𝑌)
4544rexlimdv3a 3205 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
4636, 45impbid 215 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  Posetcpo 17814  ltcplt 17815  joincjn 17818  Latclat 17937  ccvr 37013  Atomscatm 37014  HLchlt 37101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102
This theorem is referenced by:  cvrval4N  37165  cvrval5  37166  islln3  37261  llnexatN  37272  islpln3  37284  lplnexatN  37314  islvol3  37327  isline4N  37528  lhpexnle  37757
  Copyright terms: Public domain W3C validator