Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 37681
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐵 = (Base‘𝐾)
cvrval3.l = (le‘𝐾)
cvrval3.j = (join‘𝐾)
cvrval3.c 𝐶 = ( ⋖ ‘𝐾)
cvrval3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐵 = (Base‘𝐾)
2 eqid 2736 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
3 cvrval3.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 37537 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrval3.l . . . . . 6 = (le‘𝐾)
6 cvrval3.j . . . . . 6 = (join‘𝐾)
7 cvrval3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
81, 5, 2, 6, 3, 7hlrelat3 37680 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
94, 8syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
10 simp3l 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶(𝑋 𝑝))
11 simp1l1 1265 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ HL)
12 simp1l2 1266 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐵)
13 simp2 1136 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐴)
141, 5, 6, 3, 7cvr1 37678 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1511, 12, 13, 14syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1610, 15mpbird 256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ¬ 𝑝 𝑋)
1711hllatd 37631 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Lat)
181, 7atbase 37556 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1133 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐵)
201, 6latjcl 18254 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) ∈ 𝐵)
2117, 12, 19, 20syl3anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) ∈ 𝐵)
221, 2, 3cvrlt 37537 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑝)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
2311, 12, 21, 10, 22syl31anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
24 simp3r 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) 𝑌)
25 hlpos 37633 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2611, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Poset)
27 simp1l3 1267 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑌𝐵)
28 simp1r 1197 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶𝑌)
291, 5, 2, 3cvrnbtwn2 37542 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3026, 12, 27, 21, 28, 29syl131anc 1382 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3123, 24, 30mpbi2and 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) = 𝑌)
3216, 31jca 512 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
33323exp 1118 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑝𝐴 → ((𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))))
3433reximdvai 3158 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
359, 34mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
3635ex 413 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
37 simp3l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → ¬ 𝑝 𝑋)
38 simp11 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝐾 ∈ HL)
39 simp12 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐵)
40 simp2 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑝𝐴)
4138, 39, 40, 14syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
4237, 41mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶(𝑋 𝑝))
43 simp3r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (𝑋 𝑝) = 𝑌)
4442, 43breqtrd 5118 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶𝑌)
4544rexlimdv3a 3152 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
4636, 45impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3070   class class class wbr 5092  cfv 6479  (class class class)co 7337  Basecbs 17009  lecple 17066  Posetcpo 18122  ltcplt 18123  joincjn 18126  Latclat 18246  ccvr 37529  Atomscatm 37530  HLchlt 37617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-lat 18247  df-clat 18314  df-oposet 37443  df-ol 37445  df-oml 37446  df-covers 37533  df-ats 37534  df-atl 37565  df-cvlat 37589  df-hlat 37618
This theorem is referenced by:  cvrval4N  37682  cvrval5  37683  islln3  37778  llnexatN  37789  islpln3  37801  lplnexatN  37831  islvol3  37844  isline4N  38045  lhpexnle  38274
  Copyright terms: Public domain W3C validator