Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 38797
Description: Binary relation expressing π‘Œ covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐡 = (Baseβ€˜πΎ)
cvrval3.l ≀ = (leβ€˜πΎ)
cvrval3.j ∨ = (joinβ€˜πΎ)
cvrval3.c 𝐢 = ( β‹– β€˜πΎ)
cvrval3.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘‹πΆπ‘Œ ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐢,𝑝   𝐾,𝑝   ≀ ,𝑝   𝑋,𝑝   π‘Œ,𝑝
Allowed substitution hint:   ∨ (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
2 eqid 2726 . . . . . 6 (ltβ€˜πΎ) = (ltβ€˜πΎ)
3 cvrval3.c . . . . . 6 𝐢 = ( β‹– β€˜πΎ)
41, 2, 3cvrlt 38653 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ 𝑋(ltβ€˜πΎ)π‘Œ)
5 cvrval3.l . . . . . 6 ≀ = (leβ€˜πΎ)
6 cvrval3.j . . . . . 6 ∨ = (joinβ€˜πΎ)
7 cvrval3.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
81, 5, 2, 6, 3, 7hlrelat3 38796 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋(ltβ€˜πΎ)π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
94, 8syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ))
10 simp3l 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝑋𝐢(𝑋 ∨ 𝑝))
11 simp1l1 1263 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
12 simp1l2 1264 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝑋 ∈ 𝐡)
13 simp2 1134 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐴)
141, 5, 6, 3, 7cvr1 38794 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
1511, 12, 13, 14syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
1610, 15mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ Β¬ 𝑝 ≀ 𝑋)
1711hllatd 38747 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝐾 ∈ Lat)
181, 7atbase 38672 . . . . . . . . . . 11 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
19183ad2ant2 1131 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝑝 ∈ 𝐡)
201, 6latjcl 18404 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑝 ∈ 𝐡) β†’ (𝑋 ∨ 𝑝) ∈ 𝐡)
2117, 12, 19, 20syl3anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ (𝑋 ∨ 𝑝) ∈ 𝐡)
221, 2, 3cvrlt 38653 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (𝑋 ∨ 𝑝) ∈ 𝐡) ∧ 𝑋𝐢(𝑋 ∨ 𝑝)) β†’ 𝑋(ltβ€˜πΎ)(𝑋 ∨ 𝑝))
2311, 12, 21, 10, 22syl31anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝑋(ltβ€˜πΎ)(𝑋 ∨ 𝑝))
24 simp3r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ (𝑋 ∨ 𝑝) ≀ π‘Œ)
25 hlpos 38749 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ Poset)
2611, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ 𝐾 ∈ Poset)
27 simp1l3 1265 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ π‘Œ ∈ 𝐡)
28 simp1r 1195 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ π‘‹πΆπ‘Œ)
291, 5, 2, 3cvrnbtwn2 38658 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑋 ∨ 𝑝) ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ ((𝑋(ltβ€˜πΎ)(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) = π‘Œ))
3026, 12, 27, 21, 28, 29syl131anc 1380 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ ((𝑋(ltβ€˜πΎ)(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ) ↔ (𝑋 ∨ 𝑝) = π‘Œ))
3123, 24, 30mpbi2and 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ (𝑋 ∨ 𝑝) = π‘Œ)
3216, 31jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) ∧ 𝑝 ∈ 𝐴 ∧ (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ)) β†’ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ))
33323exp 1116 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (𝑝 ∈ 𝐴 β†’ ((𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ) β†’ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ))))
3433reximdvai 3159 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (𝑋𝐢(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≀ π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)))
359, 34mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ))
3635ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘‹πΆπ‘Œ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)))
37 simp3l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ Β¬ 𝑝 ≀ 𝑋)
38 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ 𝐾 ∈ HL)
39 simp12 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ 𝑋 ∈ 𝐡)
40 simp2 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ 𝑝 ∈ 𝐴)
4138, 39, 40, 14syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ (Β¬ 𝑝 ≀ 𝑋 ↔ 𝑋𝐢(𝑋 ∨ 𝑝)))
4237, 41mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ 𝑋𝐢(𝑋 ∨ 𝑝))
43 simp3r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ (𝑋 ∨ 𝑝) = π‘Œ)
4442, 43breqtrd 5167 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)) β†’ π‘‹πΆπ‘Œ)
4544rexlimdv3a 3153 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ) β†’ π‘‹πΆπ‘Œ))
4636, 45impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘‹πΆπ‘Œ ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑋 ∧ (𝑋 ∨ 𝑝) = π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  Posetcpo 18272  ltcplt 18273  joincjn 18276  Latclat 18396   β‹– ccvr 38645  Atomscatm 38646  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734
This theorem is referenced by:  cvrval4N  38798  cvrval5  38799  islln3  38894  llnexatN  38905  islpln3  38917  lplnexatN  38947  islvol3  38960  isline4N  39161  lhpexnle  39390
  Copyright terms: Public domain W3C validator