Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 37354
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐵 = (Base‘𝐾)
cvrval3.l = (le‘𝐾)
cvrval3.j = (join‘𝐾)
cvrval3.c 𝐶 = ( ⋖ ‘𝐾)
cvrval3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
3 cvrval3.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 37211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrval3.l . . . . . 6 = (le‘𝐾)
6 cvrval3.j . . . . . 6 = (join‘𝐾)
7 cvrval3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
81, 5, 2, 6, 3, 7hlrelat3 37353 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
94, 8syldan 590 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
10 simp3l 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶(𝑋 𝑝))
11 simp1l1 1264 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ HL)
12 simp1l2 1265 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐵)
13 simp2 1135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐴)
141, 5, 6, 3, 7cvr1 37351 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1511, 12, 13, 14syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1610, 15mpbird 256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ¬ 𝑝 𝑋)
1711hllatd 37305 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Lat)
181, 7atbase 37230 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1132 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐵)
201, 6latjcl 18072 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) ∈ 𝐵)
2117, 12, 19, 20syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) ∈ 𝐵)
221, 2, 3cvrlt 37211 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑝)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
2311, 12, 21, 10, 22syl31anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
24 simp3r 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) 𝑌)
25 hlpos 37307 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2611, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Poset)
27 simp1l3 1266 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑌𝐵)
28 simp1r 1196 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶𝑌)
291, 5, 2, 3cvrnbtwn2 37216 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3026, 12, 27, 21, 28, 29syl131anc 1381 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3123, 24, 30mpbi2and 708 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) = 𝑌)
3216, 31jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
33323exp 1117 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑝𝐴 → ((𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))))
3433reximdvai 3199 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
359, 34mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
3635ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
37 simp3l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → ¬ 𝑝 𝑋)
38 simp11 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝐾 ∈ HL)
39 simp12 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐵)
40 simp2 1135 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑝𝐴)
4138, 39, 40, 14syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
4237, 41mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶(𝑋 𝑝))
43 simp3r 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (𝑋 𝑝) = 𝑌)
4442, 43breqtrd 5096 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶𝑌)
4544rexlimdv3a 3214 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
4636, 45impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  Posetcpo 17940  ltcplt 17941  joincjn 17944  Latclat 18064  ccvr 37203  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  cvrval4N  37355  cvrval5  37356  islln3  37451  llnexatN  37462  islpln3  37474  lplnexatN  37504  islvol3  37517  isline4N  37718  lhpexnle  37947
  Copyright terms: Public domain W3C validator