Proof of Theorem lnjatN
Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → 𝐾 ∈ HL) |
2 | | simpl2 1192 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
3 | | simprl 769 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → (𝑀‘𝑋) ∈ 𝑁) |
4 | | lnjat.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
5 | | lnjat.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | lnjat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | lnjat.n |
. . . 4
⊢ 𝑁 = (Lines‘𝐾) |
8 | | lnjat.m |
. . . 4
⊢ 𝑀 = (pmap‘𝐾) |
9 | 4, 5, 6, 7, 8 | lnatexN 37835 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
10 | 1, 2, 3, 9 | syl3anc 1371 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
11 | | simp3l 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑞 ≠ 𝑃) |
12 | | simp1l1 1266 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝐾 ∈ HL) |
13 | | simp1l2 1267 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
14 | | simp1rl 1238 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → (𝑀‘𝑋) ∈ 𝑁) |
15 | | simp1l3 1268 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑃 ∈ 𝐴) |
16 | | simp2 1137 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑞 ∈ 𝐴) |
17 | 11 | necomd 2997 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑃 ≠ 𝑞) |
18 | | simp1rr 1239 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑃 ≤ 𝑋) |
19 | | simp3r 1202 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑞 ≤ 𝑋) |
20 | | lnjat.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
21 | 4, 5, 20, 6, 7, 8 | lneq2at 37834 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ≠ 𝑞) ∧ (𝑃 ≤ 𝑋 ∧ 𝑞 ≤ 𝑋)) → 𝑋 = (𝑃 ∨ 𝑞)) |
22 | 12, 13, 14, 15, 16, 17, 18, 19, 21 | syl332anc 1401 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → 𝑋 = (𝑃 ∨ 𝑞)) |
23 | 11, 22 | jca 513 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) ∧ 𝑞 ∈ 𝐴 ∧ (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) → (𝑞 ≠ 𝑃 ∧ 𝑋 = (𝑃 ∨ 𝑞))) |
24 | 23 | 3exp 1119 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → (𝑞 ∈ 𝐴 → ((𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋) → (𝑞 ≠ 𝑃 ∧ 𝑋 = (𝑃 ∨ 𝑞))))) |
25 | 24 | reximdvai 3159 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → (∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑋 = (𝑃 ∨ 𝑞)))) |
26 | 10, 25 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑋 = (𝑃 ∨ 𝑞))) |