Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnjatN Structured version   Visualization version   GIF version

Theorem lnjatN 39766
Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnjat.b 𝐵 = (Base‘𝐾)
lnjat.l = (le‘𝐾)
lnjat.j = (join‘𝐾)
lnjat.a 𝐴 = (Atoms‘𝐾)
lnjat.n 𝑁 = (Lines‘𝐾)
lnjat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnjatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝐾,𝑞   ,𝑞   𝑀,𝑞   𝑁,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem lnjatN
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝐾 ∈ HL)
2 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → 𝑋𝐵)
3 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (𝑀𝑋) ∈ 𝑁)
4 lnjat.b . . . 4 𝐵 = (Base‘𝐾)
5 lnjat.l . . . 4 = (le‘𝐾)
6 lnjat.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lnjat.n . . . 4 𝑁 = (Lines‘𝐾)
8 lnjat.m . . . 4 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8lnatexN 39765 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
101, 2, 3, 9syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
11 simp3l 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞𝑃)
12 simp1l1 1267 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝐾 ∈ HL)
13 simp1l2 1268 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑋𝐵)
14 simp1rl 1239 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → (𝑀𝑋) ∈ 𝑁)
15 simp1l3 1269 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃𝐴)
16 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞𝐴)
1711necomd 2982 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃𝑞)
18 simp1rr 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑃 𝑋)
19 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑞 𝑋)
20 lnjat.j . . . . . . 7 = (join‘𝐾)
214, 5, 20, 6, 7, 8lneq2at 39764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑞𝐴𝑃𝑞) ∧ (𝑃 𝑋𝑞 𝑋)) → 𝑋 = (𝑃 𝑞))
2212, 13, 14, 15, 16, 17, 18, 19, 21syl332anc 1403 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → 𝑋 = (𝑃 𝑞))
2311, 22jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞 𝑋)) → (𝑞𝑃𝑋 = (𝑃 𝑞)))
24233exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (𝑞𝐴 → ((𝑞𝑃𝑞 𝑋) → (𝑞𝑃𝑋 = (𝑃 𝑞)))))
2524reximdvai 3146 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → (∃𝑞𝐴 (𝑞𝑃𝑞 𝑋) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞))))
2610, 25mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑀𝑋) ∈ 𝑁𝑃 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑋 = (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wrex 3055   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  lecple 17233  joincjn 18278  Atomscatm 39248  HLchlt 39335  Linesclines 39480  pmapcpmap 39483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 39161  df-ol 39163  df-oml 39164  df-covers 39251  df-ats 39252  df-atl 39283  df-cvlat 39307  df-hlat 39336  df-lines 39487  df-pmap 39490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator