Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22e Structured version   Visualization version   GIF version

Theorem cdleme22e 37640
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22e.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22e.f 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme22e.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
cdleme22e.o 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
Assertion
Ref Expression
cdleme22e (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑂 𝑉))

Proof of Theorem cdleme22e
StepHypRef Expression
1 cdleme22e.n . . 3 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
2 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ HL)
32hllatd 36660 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ Lat)
4 simp21l 1287 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃𝐴)
5 simp22l 1289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄𝐴)
6 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 cdleme22.j . . . . . 6 = (join‘𝐾)
8 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36663 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp1r 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑊𝐻)
12 simp33l 1297 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧𝐴)
13 cdleme22.l . . . . . . 7 = (le‘𝐾)
14 cdleme22.m . . . . . . 7 = (meet‘𝐾)
15 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
16 cdleme22e.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
17 cdleme22e.f . . . . . . 7 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 37522 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → 𝐹 ∈ (Base‘𝐾))
192, 11, 4, 5, 12, 18syl23anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐹 ∈ (Base‘𝐾))
20 simp23l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑆𝐴)
216, 7, 8hlatjcl 36663 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑧𝐴) → (𝑆 𝑧) ∈ (Base‘𝐾))
222, 20, 12, 21syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑆 𝑧) ∈ (Base‘𝐾))
236, 15lhpbase 37294 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2411, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑊 ∈ (Base‘𝐾))
256, 14latmcl 17654 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾))
263, 22, 24, 25syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾))
276, 7latjcl 17653 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾))
283, 19, 26, 27syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾))
296, 13, 14latmle1 17678 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊))) (𝑃 𝑄))
303, 10, 28, 29syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊))) (𝑃 𝑄))
311, 30eqbrtrid 5065 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑃 𝑄))
32 simp1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
34 simp23r 1292 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑇𝐴)
35 simp31 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑉𝐴𝑉 𝑊))
36 simp32l 1295 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃𝑄)
37 simp32r 1296 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑉) = (𝑃 𝑄))
3813, 7, 14, 8, 15, 16cdleme22a 37636 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑇𝐴) ∧ ((𝑉𝐴𝑉 𝑊) ∧ 𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑉 = 𝑈)
3932, 33, 5, 34, 35, 36, 37, 38syl133anc 1390 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑉 = 𝑈)
4039oveq2d 7151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑂 𝑉) = (𝑂 𝑈))
41 cdleme22e.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
4241oveq1i 7145 . . . . 5 (𝑂 𝑈) = (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈)
43 simp21r 1288 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ¬ 𝑃 𝑊)
4413, 7, 14, 8, 15, 16cdleme0a 37507 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
452, 11, 4, 43, 5, 36, 44syl222anc 1383 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈𝐴)
466, 7, 8hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → (𝑇 𝑧) ∈ (Base‘𝐾))
472, 34, 12, 46syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑧) ∈ (Base‘𝐾))
486, 14latmcl 17654 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
493, 47, 24, 48syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
506, 7latjcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
513, 19, 49, 50syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
5213, 7, 14, 8, 15, 16cdlemeulpq 37516 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
532, 11, 4, 5, 52syl22anc 837 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 (𝑃 𝑄))
546, 13, 7, 14, 8atmod2i1 37157 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑃 𝑄)) → (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
552, 45, 10, 51, 53, 54syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
5642, 55syl5req 2846 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑂 𝑈))
5740, 56eqtr4d 2836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑂 𝑉) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
5839oveq2d 7151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑉) = (𝑇 𝑈))
5937, 58eqtr3d 2835 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) = (𝑇 𝑈))
606, 7, 8hlatjcl 36663 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
612, 34, 45, 60syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ∈ (Base‘𝐾))
626, 8atbase 36585 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
6312, 62syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 ∈ (Base‘𝐾))
646, 13, 7latlej1 17662 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
653, 61, 63, 64syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
667, 8hlatj32 36668 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑧𝐴)) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
672, 34, 45, 12, 66syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
686, 8atbase 36585 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
6945, 68syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 ∈ (Base‘𝐾))
706, 7latj32 17699 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
713, 63, 69, 49, 70syl13anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
726, 7latj32 17699 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)))
733, 19, 49, 69, 72syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)))
746, 7, 8hlatjcl 36663 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
752, 4, 12, 74syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑧) ∈ (Base‘𝐾))
7613, 7, 8hlatlej1 36671 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → 𝑃 (𝑃 𝑧))
772, 4, 12, 76syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃 (𝑃 𝑧))
786, 13, 7, 14, 8atmod3i1 37160 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑧)) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
792, 4, 75, 24, 77, 78syl131anc 1380 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
80 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (1.‘𝐾) = (1.‘𝐾)
8113, 7, 80, 8, 15lhpjat2 37317 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
822, 11, 33, 81syl21anc 836 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑊) = (1.‘𝐾))
8382oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) (𝑃 𝑊)) = ((𝑃 𝑧) (1.‘𝐾)))
84 hlol 36657 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ OL)
852, 84syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ OL)
866, 14, 80olm11 36523 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ OL ∧ (𝑃 𝑧) ∈ (Base‘𝐾)) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
8785, 75, 86syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
8879, 83, 873eqtrd 2837 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 ((𝑃 𝑧) 𝑊)) = (𝑃 𝑧))
8988oveq1d 7150 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑧) 𝑄))
9016oveq2i 7146 . . . . . . . . . . . . . . . . . . 19 (𝑄 𝑈) = (𝑄 ((𝑃 𝑄) 𝑊))
9113, 7, 8hlatlej2 36672 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
922, 4, 5, 91syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄 (𝑃 𝑄))
936, 13, 7, 14, 8atmod3i1 37160 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
942, 5, 10, 24, 92, 93syl131anc 1380 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
9590, 94syl5eq 2845 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑈) = ((𝑃 𝑄) (𝑄 𝑊)))
96 simp22 1204 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9713, 7, 80, 8, 15lhpjat2 37317 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
982, 11, 96, 97syl21anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑊) = (1.‘𝐾))
9998oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (𝑄 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
1006, 14, 80olm11 36523 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
10185, 10, 100syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
10295, 99, 1013eqtrd 2837 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
103102oveq1d 7150 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1046, 8atbase 36585 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1054, 104syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃 ∈ (Base‘𝐾))
1066, 14latmcl 17654 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1073, 75, 24, 106syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1086, 8atbase 36585 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1095, 108syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄 ∈ (Base‘𝐾))
1106, 7latj32 17699 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1113, 105, 107, 109, 110syl13anc 1369 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
112103, 111eqtr4d 2836 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄))
1137, 8hlatj32 36668 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
1142, 4, 5, 12, 113syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
11589, 112, 1143eqtr4rd 2844 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)))
1166, 7latj32 17699 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
1173, 109, 69, 107, 116syl13anc 1369 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
118115, 117eqtrd 2833 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
119118oveq2d 7151 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1206, 7latjcl 17653 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1213, 10, 63, 120syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1226, 13, 7latlej2 17663 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧 ((𝑃 𝑄) 𝑧))
1233, 10, 63, 122syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 ((𝑃 𝑄) 𝑧))
1246, 13, 7, 14, 8atmod1i1 37153 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑧𝐴𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) ∧ 𝑧 ((𝑃 𝑄) 𝑧)) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
1252, 12, 69, 121, 123, 124syl131anc 1380 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
12617oveq1i 7145 . . . . . . . . . . . . 13 (𝐹 𝑈) = (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈)
1276, 7, 8hlatjcl 36663 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → (𝑧 𝑈) ∈ (Base‘𝐾))
1282, 12, 45, 127syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 𝑈) ∈ (Base‘𝐾))
1296, 7latjcl 17653 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
1303, 109, 107, 129syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
13113, 7, 8hlatlej2 36672 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → 𝑈 (𝑧 𝑈))
1322, 12, 45, 131syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 (𝑧 𝑈))
1336, 13, 7, 14, 8atmod2i1 37157 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑧 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑧 𝑈)) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1342, 45, 128, 130, 132, 133syl131anc 1380 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
135126, 134syl5eq 2845 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
136119, 125, 1353eqtr4rd 2844 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))))
1376, 13, 7latlej1 17662 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1383, 10, 63, 137syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1396, 13, 3, 69, 10, 121, 53, 138lattrd 17660 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 ((𝑃 𝑄) 𝑧))
1406, 13, 14latleeqm1 17681 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
1413, 69, 121, 140syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
142139, 141mpbid 235 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈)
143142oveq2d 7151 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = (𝑧 𝑈))
144136, 143eqtrd 2833 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = (𝑧 𝑈))
145144oveq1d 7150 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
14673, 145eqtrd 2833 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
14713, 7, 8hlatlej2 36672 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → 𝑧 (𝑇 𝑧))
1482, 34, 12, 147syl3anc 1368 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 (𝑇 𝑧))
1496, 13, 7, 14, 8atmod3i1 37160 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑧𝐴 ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑧 (𝑇 𝑧)) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
1502, 12, 47, 24, 148, 149syl131anc 1380 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
151 simp33 1208 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
15213, 7, 80, 8, 15lhpjat2 37317 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)) → (𝑧 𝑊) = (1.‘𝐾))
1532, 11, 151, 152syl21anc 836 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 𝑊) = (1.‘𝐾))
154153oveq2d 7151 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) (𝑧 𝑊)) = ((𝑇 𝑧) (1.‘𝐾)))
155150, 154eqtrd 2833 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (1.‘𝐾)))
1566, 14, 80olm11 36523 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑇 𝑧) ∈ (Base‘𝐾)) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
15785, 47, 156syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
158155, 157eqtr2d 2834 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑧) = (𝑧 ((𝑇 𝑧) 𝑊)))
159158oveq1d 7150 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑈) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
16071, 146, 1593eqtr4rd 2844 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑈) = ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16167, 160eqtrd 2833 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑈) 𝑧) = ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16265, 161breqtrd 5056 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16359, 162eqbrtrd 5052 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
1646, 7latjcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1653, 51, 69, 164syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1666, 13, 14latleeqm1 17681 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
1673, 10, 165, 166syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
168163, 167mpbid 235 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄))
16957, 168eqtr2d 2834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) = (𝑂 𝑉))
17031, 169breqtrd 5056 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑂 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  1.cp1 17640  Latclat 17647  OLcol 36470  Atomscatm 36559  HLchlt 36646  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284
This theorem is referenced by:  cdleme26e  37655
  Copyright terms: Public domain W3C validator