Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22e Structured version   Visualization version   GIF version

Theorem cdleme22e 40338
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22e.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22e.f 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme22e.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
cdleme22e.o 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
Assertion
Ref Expression
cdleme22e (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑂 𝑉))

Proof of Theorem cdleme22e
StepHypRef Expression
1 cdleme22e.n . . 3 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
2 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ HL)
32hllatd 39357 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ Lat)
4 simp21l 1291 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃𝐴)
5 simp22l 1293 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄𝐴)
6 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 cdleme22.j . . . . . 6 = (join‘𝐾)
8 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑊𝐻)
12 simp33l 1301 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧𝐴)
13 cdleme22.l . . . . . . 7 = (le‘𝐾)
14 cdleme22.m . . . . . . 7 = (meet‘𝐾)
15 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
16 cdleme22e.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
17 cdleme22e.f . . . . . . 7 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 40220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → 𝐹 ∈ (Base‘𝐾))
192, 11, 4, 5, 12, 18syl23anc 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐹 ∈ (Base‘𝐾))
20 simp23l 1295 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑆𝐴)
216, 7, 8hlatjcl 39360 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑧𝐴) → (𝑆 𝑧) ∈ (Base‘𝐾))
222, 20, 12, 21syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑆 𝑧) ∈ (Base‘𝐾))
236, 15lhpbase 39992 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2411, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑊 ∈ (Base‘𝐾))
256, 14latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾))
263, 22, 24, 25syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾))
276, 7latjcl 18398 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾))
283, 19, 26, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾))
296, 13, 14latmle1 18423 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑆 𝑧) 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊))) (𝑃 𝑄))
303, 10, 28, 29syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊))) (𝑃 𝑄))
311, 30eqbrtrid 5142 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑃 𝑄))
32 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
34 simp23r 1296 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑇𝐴)
35 simp31 1210 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑉𝐴𝑉 𝑊))
36 simp32l 1299 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃𝑄)
37 simp32r 1300 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑉) = (𝑃 𝑄))
3813, 7, 14, 8, 15, 16cdleme22a 40334 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑇𝐴) ∧ ((𝑉𝐴𝑉 𝑊) ∧ 𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑉 = 𝑈)
3932, 33, 5, 34, 35, 36, 37, 38syl133anc 1395 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑉 = 𝑈)
4039oveq2d 7403 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑂 𝑉) = (𝑂 𝑈))
41 cdleme22e.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
4241oveq1i 7397 . . . . 5 (𝑂 𝑈) = (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈)
43 simp21r 1292 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ¬ 𝑃 𝑊)
4413, 7, 14, 8, 15, 16cdleme0a 40205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
452, 11, 4, 43, 5, 36, 44syl222anc 1388 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈𝐴)
466, 7, 8hlatjcl 39360 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → (𝑇 𝑧) ∈ (Base‘𝐾))
472, 34, 12, 46syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑧) ∈ (Base‘𝐾))
486, 14latmcl 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
493, 47, 24, 48syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))
506, 7latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
513, 19, 49, 50syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾))
5213, 7, 14, 8, 15, 16cdlemeulpq 40214 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
532, 11, 4, 5, 52syl22anc 838 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 (𝑃 𝑄))
546, 13, 7, 14, 8atmod2i1 39855 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑃 𝑄)) → (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
552, 45, 10, 51, 53, 54syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊))) 𝑈) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
5642, 55eqtr2id 2777 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑂 𝑈))
5740, 56eqtr4d 2767 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑂 𝑉) = ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)))
5839oveq2d 7403 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑉) = (𝑇 𝑈))
5937, 58eqtr3d 2766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) = (𝑇 𝑈))
606, 7, 8hlatjcl 39360 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
612, 34, 45, 60syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ∈ (Base‘𝐾))
626, 8atbase 39282 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
6312, 62syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 ∈ (Base‘𝐾))
646, 13, 7latlej1 18407 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
653, 61, 63, 64syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ((𝑇 𝑈) 𝑧))
667, 8hlatj32 39365 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑧𝐴)) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
672, 34, 45, 12, 66syl13anc 1374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑈) 𝑧) = ((𝑇 𝑧) 𝑈))
686, 8atbase 39282 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
6945, 68syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 ∈ (Base‘𝐾))
706, 7latj32 18444 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
713, 63, 69, 49, 70syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
726, 7latj32 18444 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Base‘𝐾) ∧ ((𝑇 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)))
733, 19, 49, 69, 72syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)))
746, 7, 8hlatjcl 39360 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
752, 4, 12, 74syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑧) ∈ (Base‘𝐾))
7613, 7, 8hlatlej1 39368 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → 𝑃 (𝑃 𝑧))
772, 4, 12, 76syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃 (𝑃 𝑧))
786, 13, 7, 14, 8atmod3i1 39858 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑧)) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
792, 4, 75, 24, 77, 78syl131anc 1385 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑧) (𝑃 𝑊)))
80 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (1.‘𝐾) = (1.‘𝐾)
8113, 7, 80, 8, 15lhpjat2 40015 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
822, 11, 33, 81syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑊) = (1.‘𝐾))
8382oveq2d 7403 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) (𝑃 𝑊)) = ((𝑃 𝑧) (1.‘𝐾)))
84 hlol 39354 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ OL)
852, 84syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐾 ∈ OL)
866, 14, 80olm11 39220 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ OL ∧ (𝑃 𝑧) ∈ (Base‘𝐾)) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
8785, 75, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) (1.‘𝐾)) = (𝑃 𝑧))
8879, 83, 873eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 ((𝑃 𝑧) 𝑊)) = (𝑃 𝑧))
8988oveq1d 7402 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑧) 𝑄))
9016oveq2i 7398 . . . . . . . . . . . . . . . . . . 19 (𝑄 𝑈) = (𝑄 ((𝑃 𝑄) 𝑊))
9113, 7, 8hlatlej2 39369 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
922, 4, 5, 91syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄 (𝑃 𝑄))
936, 13, 7, 14, 8atmod3i1 39858 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑄 (𝑃 𝑄)) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
942, 5, 10, 24, 92, 93syl131anc 1385 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑄 𝑊)))
9590, 94eqtrid 2776 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑈) = ((𝑃 𝑄) (𝑄 𝑊)))
96 simp22 1208 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9713, 7, 80, 8, 15lhpjat2 40015 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
982, 11, 96, 97syl21anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑊) = (1.‘𝐾))
9998oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (𝑄 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
1006, 14, 80olm11 39220 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
10185, 10, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
10295, 99, 1013eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
103102oveq1d 7402 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1046, 8atbase 39282 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1054, 104syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑃 ∈ (Base‘𝐾))
1066, 14latmcl 18399 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1073, 75, 24, 106syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))
1086, 8atbase 39282 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1095, 108syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑄 ∈ (Base‘𝐾))
1106, 7latj32 18444 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
1113, 105, 107, 109, 110syl13anc 1374 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄) = ((𝑃 𝑄) ((𝑃 𝑧) 𝑊)))
112103, 111eqtr4d 2767 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑃 ((𝑃 𝑧) 𝑊)) 𝑄))
1137, 8hlatj32 39365 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑧𝐴)) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
1142, 4, 5, 12, 113syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑃 𝑧) 𝑄))
11589, 112, 1143eqtr4rd 2775 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)))
1166, 7latj32 18444 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
1173, 109, 69, 107, 116syl13anc 1374 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑄 𝑈) ((𝑃 𝑧) 𝑊)) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
118115, 117eqtrd 2764 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) = ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈))
119118oveq2d 7403 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1206, 7latjcl 18398 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1213, 10, 63, 120syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾))
1226, 13, 7latlej2 18408 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧 ((𝑃 𝑄) 𝑧))
1233, 10, 63, 122syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 ((𝑃 𝑄) 𝑧))
1246, 13, 7, 14, 8atmod1i1 39851 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑧𝐴𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) ∧ 𝑧 ((𝑃 𝑄) 𝑧)) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
1252, 12, 69, 121, 123, 124syl131anc 1385 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = ((𝑧 𝑈) ((𝑃 𝑄) 𝑧)))
12617oveq1i 7397 . . . . . . . . . . . . 13 (𝐹 𝑈) = (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈)
1276, 7, 8hlatjcl 39360 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → (𝑧 𝑈) ∈ (Base‘𝐾))
1282, 12, 45, 127syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 𝑈) ∈ (Base‘𝐾))
1296, 7latjcl 18398 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑧) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
1303, 109, 107, 129syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾))
13113, 7, 8hlatlej2 39369 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑈𝐴) → 𝑈 (𝑧 𝑈))
1322, 12, 45, 131syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 (𝑧 𝑈))
1336, 13, 7, 14, 8atmod2i1 39855 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑧 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑧) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑧 𝑈)) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
1342, 45, 128, 130, 132, 133syl131anc 1385 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊))) 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
135126, 134eqtrid 2776 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = ((𝑧 𝑈) ((𝑄 ((𝑃 𝑧) 𝑊)) 𝑈)))
136119, 125, 1353eqtr4rd 2775 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))))
1376, 13, 7latlej1 18407 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1383, 10, 63, 137syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ((𝑃 𝑄) 𝑧))
1396, 13, 3, 69, 10, 121, 53, 138lattrd 18405 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑈 ((𝑃 𝑄) 𝑧))
1406, 13, 14latleeqm1 18426 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑧) ∈ (Base‘𝐾)) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
1413, 69, 121, 140syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑈 ((𝑃 𝑄) 𝑧) ↔ (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈))
142139, 141mpbid 232 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑈 ((𝑃 𝑄) 𝑧)) = 𝑈)
143142oveq2d 7403 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 (𝑈 ((𝑃 𝑄) 𝑧))) = (𝑧 𝑈))
144136, 143eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝐹 𝑈) = (𝑧 𝑈))
145144oveq1d 7402 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 𝑈) ((𝑇 𝑧) 𝑊)) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
14673, 145eqtrd 2764 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) = ((𝑧 𝑈) ((𝑇 𝑧) 𝑊)))
14713, 7, 8hlatlej2 39369 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑧𝐴) → 𝑧 (𝑇 𝑧))
1482, 34, 12, 147syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑧 (𝑇 𝑧))
1496, 13, 7, 14, 8atmod3i1 39858 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑧𝐴 ∧ (𝑇 𝑧) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑧 (𝑇 𝑧)) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
1502, 12, 47, 24, 148, 149syl131anc 1385 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (𝑧 𝑊)))
151 simp33 1212 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
15213, 7, 80, 8, 15lhpjat2 40015 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)) → (𝑧 𝑊) = (1.‘𝐾))
1532, 11, 151, 152syl21anc 837 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 𝑊) = (1.‘𝐾))
154153oveq2d 7403 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) (𝑧 𝑊)) = ((𝑇 𝑧) (1.‘𝐾)))
155150, 154eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑧 ((𝑇 𝑧) 𝑊)) = ((𝑇 𝑧) (1.‘𝐾)))
1566, 14, 80olm11 39220 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑇 𝑧) ∈ (Base‘𝐾)) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
15785, 47, 156syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) (1.‘𝐾)) = (𝑇 𝑧))
158155, 157eqtr2d 2765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑧) = (𝑧 ((𝑇 𝑧) 𝑊)))
159158oveq1d 7402 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑈) = ((𝑧 ((𝑇 𝑧) 𝑊)) 𝑈))
16071, 146, 1593eqtr4rd 2775 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑧) 𝑈) = ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16167, 160eqtrd 2764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑇 𝑈) 𝑧) = ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16265, 161breqtrd 5133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑇 𝑈) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
16359, 162eqbrtrd 5129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈))
1646, 7latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹 ((𝑇 𝑧) 𝑊)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1653, 51, 69, 164syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾))
1666, 13, 14latleeqm1 18426 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
1673, 10, 165, 166syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈) ↔ ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄)))
168163, 167mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → ((𝑃 𝑄) ((𝐹 ((𝑇 𝑧) 𝑊)) 𝑈)) = (𝑃 𝑄))
16957, 168eqtr2d 2765 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → (𝑃 𝑄) = (𝑂 𝑉))
17031, 169breqtrd 5133 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((𝑉𝐴𝑉 𝑊) ∧ (𝑃𝑄 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝑁 (𝑂 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  1.cp1 18383  Latclat 18390  OLcol 39167  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982
This theorem is referenced by:  cdleme26e  40353
  Copyright terms: Public domain W3C validator