Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22e Structured version   Visualization version   GIF version

Theorem cdleme22e 39671
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t ∨ v = p ∨ q, fz(s) ≀ fz(t) ∨ v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l ≀ = (leβ€˜πΎ)
cdleme22.j ∨ = (joinβ€˜πΎ)
cdleme22.m ∧ = (meetβ€˜πΎ)
cdleme22.a 𝐴 = (Atomsβ€˜πΎ)
cdleme22.h 𝐻 = (LHypβ€˜πΎ)
cdleme22e.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme22e.f 𝐹 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
cdleme22e.n 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)))
cdleme22e.o 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
Assertion
Ref Expression
cdleme22e (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑁 ≀ (𝑂 ∨ 𝑉))

Proof of Theorem cdleme22e
StepHypRef Expression
1 cdleme22e.n . . 3 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)))
2 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
32hllatd 38690 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
4 simp21l 1287 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
5 simp22l 1289 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
6 eqid 2724 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme22.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 cdleme22.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 38693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
102, 4, 5, 9syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp1r 1195 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘Š ∈ 𝐻)
12 simp33l 1297 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑧 ∈ 𝐴)
13 cdleme22.l . . . . . . 7 ≀ = (leβ€˜πΎ)
14 cdleme22.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
15 cdleme22.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
16 cdleme22e.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
17 cdleme22e.f . . . . . . 7 𝐹 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 39553 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
192, 11, 4, 5, 12, 18syl23anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
20 simp23l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑆 ∈ 𝐴)
216, 7, 8hlatjcl 38693 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ (𝑆 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
222, 20, 12, 21syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑆 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
236, 15lhpbase 39325 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2411, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
256, 14latmcl 18392 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑧) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑆 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
263, 22, 24, 25syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑆 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
276, 7latjcl 18391 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑆 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
283, 19, 26, 27syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
296, 13, 14latmle1 18416 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š))) ≀ (𝑃 ∨ 𝑄))
303, 10, 28, 29syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ π‘Š))) ≀ (𝑃 ∨ 𝑄))
311, 30eqbrtrid 5173 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑁 ≀ (𝑃 ∨ 𝑄))
32 simp1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
33 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
34 simp23r 1292 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑇 ∈ 𝐴)
35 simp31 1206 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š))
36 simp32l 1295 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑃 β‰  𝑄)
37 simp32r 1296 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))
3813, 7, 14, 8, 15, 16cdleme22a 39667 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ 𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))) β†’ 𝑉 = π‘ˆ)
3932, 33, 5, 34, 35, 36, 37, 38syl133anc 1390 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑉 = π‘ˆ)
4039oveq2d 7417 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑂 ∨ 𝑉) = (𝑂 ∨ π‘ˆ))
41 cdleme22e.o . . . . . 6 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
4241oveq1i 7411 . . . . 5 (𝑂 ∨ π‘ˆ) = (((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ)
43 simp21r 1288 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ Β¬ 𝑃 ≀ π‘Š)
4413, 7, 14, 8, 15, 16cdleme0a 39538 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ π‘ˆ ∈ 𝐴)
452, 11, 4, 43, 5, 36, 44syl222anc 1383 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘ˆ ∈ 𝐴)
466, 7, 8hlatjcl 38693 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ (𝑇 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
472, 34, 12, 46syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
486, 14latmcl 18392 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑇 ∨ 𝑧) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑇 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
493, 47, 24, 48syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
506, 7latjcl 18391 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
513, 19, 49, 50syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
5213, 7, 14, 8, 15, 16cdlemeulpq 39547 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
532, 11, 4, 5, 52syl22anc 836 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘ˆ ≀ (𝑃 ∨ 𝑄))
546, 13, 7, 14, 8atmod2i1 39188 . . . . . 6 ((𝐾 ∈ HL ∧ (π‘ˆ ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ (𝑃 ∨ 𝑄)) β†’ (((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ) = ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
552, 45, 10, 51, 53, 54syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ) = ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
5642, 55eqtr2id 2777 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)) = (𝑂 ∨ π‘ˆ))
5740, 56eqtr4d 2767 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑂 ∨ 𝑉) = ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
5839oveq2d 7417 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ 𝑉) = (𝑇 ∨ π‘ˆ))
5937, 58eqtr3d 2766 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) = (𝑇 ∨ π‘ˆ))
606, 7, 8hlatjcl 38693 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
612, 34, 45, 60syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
626, 8atbase 38615 . . . . . . . 8 (𝑧 ∈ 𝐴 β†’ 𝑧 ∈ (Baseβ€˜πΎ))
6312, 62syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜πΎ))
646, 13, 7latlej1 18400 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ (𝑇 ∨ π‘ˆ) ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑧))
653, 61, 63, 64syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ π‘ˆ) ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑧))
667, 8hlatj32 38698 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑧) = ((𝑇 ∨ 𝑧) ∨ π‘ˆ))
672, 34, 45, 12, 66syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑧) = ((𝑇 ∨ 𝑧) ∨ π‘ˆ))
686, 8atbase 38615 . . . . . . . . . 10 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
6945, 68syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
706, 7latj32 18437 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ ((𝑧 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
713, 63, 69, 49, 70syl13anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑧 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
726, 7latj32 18437 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑇 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ))) β†’ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) = ((𝐹 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
733, 19, 49, 69, 72syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) = ((𝐹 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
746, 7, 8hlatjcl 38693 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ (𝑃 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
752, 4, 12, 74syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑧) ∈ (Baseβ€˜πΎ))
7613, 7, 8hlatlej1 38701 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ 𝑧))
772, 4, 12, 76syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑃 ≀ (𝑃 ∨ 𝑧))
786, 13, 7, 14, 8atmod3i1 39191 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑃 ≀ (𝑃 ∨ 𝑧)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ π‘Š)))
792, 4, 75, 24, 77, 78syl131anc 1380 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ π‘Š)))
80 eqid 2724 . . . . . . . . . . . . . . . . . . . 20 (1.β€˜πΎ) = (1.β€˜πΎ)
8113, 7, 80, 8, 15lhpjat2 39348 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
822, 11, 33, 81syl21anc 835 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
8382oveq2d 7417 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑧) ∧ (𝑃 ∨ π‘Š)) = ((𝑃 ∨ 𝑧) ∧ (1.β€˜πΎ)))
84 hlol 38687 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
852, 84syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝐾 ∈ OL)
866, 14, 80olm11 38553 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑧) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑧) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑧))
8785, 75, 86syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑧) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑧))
8879, 83, 873eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = (𝑃 ∨ 𝑧))
8988oveq1d 7416 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ 𝑄) = ((𝑃 ∨ 𝑧) ∨ 𝑄))
9016oveq2i 7412 . . . . . . . . . . . . . . . . . . 19 (𝑄 ∨ π‘ˆ) = (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))
9113, 7, 8hlatlej2 38702 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
922, 4, 5, 91syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
936, 13, 7, 14, 8atmod3i1 39191 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑄 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ π‘Š)))
942, 5, 10, 24, 92, 93syl131anc 1380 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ π‘Š)))
9590, 94eqtrid 2776 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∨ π‘ˆ) = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ π‘Š)))
96 simp22 1204 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
9713, 7, 80, 8, 15lhpjat2 39348 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑄 ∨ π‘Š) = (1.β€˜πΎ))
982, 11, 96, 97syl21anc 835 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∨ π‘Š) = (1.β€˜πΎ))
9998oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)))
1006, 14, 80olm11 38553 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑄))
10185, 10, 100syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑄))
10295, 99, 1013eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
103102oveq1d 7416 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑄 ∨ π‘ˆ) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
1046, 8atbase 38615 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1054, 104syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1066, 14latmcl 18392 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑧) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
1073, 75, 24, 106syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
1086, 8atbase 38615 . . . . . . . . . . . . . . . . . 18 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1095, 108syl 17 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1106, 7latj32 18437 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
1113, 105, 107, 109, 110syl13anc 1369 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
112103, 111eqtr4d 2767 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑄 ∨ π‘ˆ) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑃 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ 𝑄))
1137, 8hlatj32 38698 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑃 ∨ 𝑧) ∨ 𝑄))
1142, 4, 5, 12, 113syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑃 ∨ 𝑧) ∨ 𝑄))
11589, 112, 1143eqtr4rd 2775 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑄 ∨ π‘ˆ) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
1166, 7latj32 18437 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ∨ π‘ˆ) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
1173, 109, 69, 107, 116syl13anc 1369 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑄 ∨ π‘ˆ) ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
118115, 117eqtrd 2764 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) = ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
119118oveq2d 7417 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑧 ∨ π‘ˆ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
1206, 7latjcl 18391 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Baseβ€˜πΎ))
1213, 10, 63, 120syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Baseβ€˜πΎ))
1226, 13, 7latlej2 18401 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ 𝑧 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧))
1233, 10, 63, 122syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑧 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧))
1246, 13, 7, 14, 8atmod1i1 39184 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑧 ∈ 𝐴 ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Baseβ€˜πΎ)) ∧ 𝑧 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧)) β†’ (𝑧 ∨ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)))
1252, 12, 69, 121, 123, 124syl131anc 1380 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)))
12617oveq1i 7411 . . . . . . . . . . . . 13 (𝐹 ∨ π‘ˆ) = (((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ)
1276, 7, 8hlatjcl 38693 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑧 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1282, 12, 45, 127syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1296, 7latjcl 18391 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑧) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
1303, 109, 107, 129syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
13113, 7, 8hlatlej2 38702 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ π‘ˆ ≀ (𝑧 ∨ π‘ˆ))
1322, 12, 45, 131syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘ˆ ≀ (𝑧 ∨ π‘ˆ))
1336, 13, 7, 14, 8atmod2i1 39188 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (π‘ˆ ∈ 𝐴 ∧ (𝑧 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ (𝑧 ∨ π‘ˆ)) β†’ (((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
1342, 45, 128, 130, 132, 133syl131anc 1380 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) ∨ π‘ˆ) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
135126, 134eqtrid 2776 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐹 ∨ π‘ˆ) = ((𝑧 ∨ π‘ˆ) ∧ ((𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)))
136119, 125, 1353eqtr4rd 2775 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐹 ∨ π‘ˆ) = (𝑧 ∨ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))))
1376, 13, 7latlej1 18400 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧))
1383, 10, 63, 137syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧))
1396, 13, 3, 69, 10, 121, 53, 138lattrd 18398 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ π‘ˆ ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧))
1406, 13, 14latleeqm1 18419 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧) ∈ (Baseβ€˜πΎ)) β†’ (π‘ˆ ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧) ↔ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = π‘ˆ))
1413, 69, 121, 140syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (π‘ˆ ≀ ((𝑃 ∨ 𝑄) ∨ 𝑧) ↔ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = π‘ˆ))
142139, 141mpbid 231 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧)) = π‘ˆ)
143142oveq2d 7417 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ (π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑧))) = (𝑧 ∨ π‘ˆ))
144136, 143eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝐹 ∨ π‘ˆ) = (𝑧 ∨ π‘ˆ))
145144oveq1d 7416 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝐹 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑧 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
14673, 145eqtrd 2764 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) = ((𝑧 ∨ π‘ˆ) ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
14713, 7, 8hlatlej2 38702 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 ≀ (𝑇 ∨ 𝑧))
1482, 34, 12, 147syl3anc 1368 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑧 ≀ (𝑇 ∨ 𝑧))
1496, 13, 7, 14, 8atmod3i1 39191 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑧 ∈ 𝐴 ∧ (𝑇 ∨ 𝑧) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑧 ≀ (𝑇 ∨ 𝑧)) β†’ (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ π‘Š)))
1502, 12, 47, 24, 148, 149syl131anc 1380 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ π‘Š)))
151 simp33 1208 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))
15213, 7, 80, 8, 15lhpjat2 39348 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š)) β†’ (𝑧 ∨ π‘Š) = (1.β€˜πΎ))
1532, 11, 151, 152syl21anc 835 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ π‘Š) = (1.β€˜πΎ))
154153oveq2d 7417 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ 𝑧) ∧ (𝑧 ∨ π‘Š)) = ((𝑇 ∨ 𝑧) ∧ (1.β€˜πΎ)))
155150, 154eqtrd 2764 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) = ((𝑇 ∨ 𝑧) ∧ (1.β€˜πΎ)))
1566, 14, 80olm11 38553 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑇 ∨ 𝑧) ∈ (Baseβ€˜πΎ)) β†’ ((𝑇 ∨ 𝑧) ∧ (1.β€˜πΎ)) = (𝑇 ∨ 𝑧))
15785, 47, 156syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ 𝑧) ∧ (1.β€˜πΎ)) = (𝑇 ∨ 𝑧))
158155, 157eqtr2d 2765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ 𝑧) = (𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)))
159158oveq1d 7416 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ 𝑧) ∨ π‘ˆ) = ((𝑧 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
16071, 146, 1593eqtr4rd 2775 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ 𝑧) ∨ π‘ˆ) = ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
16167, 160eqtrd 2764 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑇 ∨ π‘ˆ) ∨ 𝑧) = ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
16265, 161breqtrd 5164 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑇 ∨ π‘ˆ) ≀ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
16359, 162eqbrtrd 5160 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ≀ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ))
1646, 7latjcl 18391 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1653, 51, 69, 164syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1666, 13, 14latleeqm1 18419 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ≀ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) ↔ ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)) = (𝑃 ∨ 𝑄)))
1673, 10, 165, 166syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ≀ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ) ↔ ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)) = (𝑃 ∨ 𝑄)))
168163, 167mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ ((𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ π‘Š)) ∨ π‘ˆ)) = (𝑃 ∨ 𝑄))
16957, 168eqtr2d 2765 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) = (𝑂 ∨ 𝑉))
17031, 169breqtrd 5164 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š))) β†’ 𝑁 ≀ (𝑂 ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  meetcmee 18264  1.cp1 18376  Latclat 18383  OLcol 38500  Atomscatm 38589  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315
This theorem is referenced by:  cdleme26e  39686
  Copyright terms: Public domain W3C validator